INFINITE DIMENSIONAL UNIVERSAL BURGER-MOZES GROUPS

REMI BARRITAULT

AsstrACT. Given a countably infinite first-order structure M and a suitable coloring of the regular
tree of countably infinite valency T, one can define the subgroup Aut y(T) of Aut(T) consisting of all
the automorphisms of T with local actions prescribed by Aut(M) ~ M. This is a generalization of a
construction carried out by Burger and Mozes in the finite valency case.

Under some transitivity and mild model-theoretic hypotheses on M, we fully classify the con-
tinuous irreducible unitary representation of Auty(T). This is achieved by building on a similar
classification by Ol’sanskii for the whole group Aut(T), which can be seen as the special case where
M is the trivial structure. This provides new examples of locally Roelcke-precompact Polish groups
of Type L.

INTRODUCTION

In abstract harmonic analysis, the notion of Type I, a very general property taking roots in
the study of von Neumann algebras, forms a dividing line between topological groups whose
representation theory is tractable and those for which it is too wild to be fully understood. We
refer to [Bd20] for a formal definition and only give an illustration: by a celebrated theorem of
Glimm [Gli61], a locally compact group G is of Type I if and only if every continuous unitary
representation of G decomposes uniquely as a direct integral of irreducible representations. For
such reasons, deciding if a given topological group G is of Type I or not is a crucial step in
studying G from the prism of its representation theory.

For fundamental reasons, all abelian groups are of Type I, even as discrete groups. In fact,
a discrete group is of Type I if and only if it is virtually abelian by a classical result of Thoma
[Tho68]. In the non-discrete case, the picture is a lot richer while remaining, to this day, far less
complete. Since locally compact groups come with natural operator algebras associated to them,
most of the effort in the study of Type I groups has been devoted to the locally compact case. First,
compact groups are of Type I and, more generally, all locally compact groups are determined by
their irreducible unitary representation by the Gel’fand-Raikov Theorem. In particular, they all
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have faithful representations. Examples of Type I locally group include all of the connected semi-
simple [Har54] or nilpotent Lie groups [Dix59, Kir61] and all connected real algebraic groups
[Dix57]. On the other hand, the Mautner group is a solvable connected Lie group which is not of
Type I (due to Mautner, unpublished, see [Bag78]).

At the opposite end of connected Lie groups are the totally disconnected locally compact
groups, for which a large part of the landscape is occupied by those who act on trees. In 1999,
Nebbia obtained a striking result linking the regularity of the representation theory of such a
group to the transitivity of its action on the tree (the CCR property is a strengthening of the Type

I property):

Theorem ([Neb99]). Let T; be the regular tree of finite valency d € N3 and let G be a closed uni-
modular subgroup of Aut(Ty) acting transitively on T.
If G is CCR, then G acts transitively on the boundary of X.

In the same paper, Nebbia conjectured that the converse also holds, i.e. that having a very tran-
sitive action is the same as having a very tame representation theory for such groups. Nebbia’s
CCR conjecture is still open in its full generality but some substantial progress has been made
recently. Houdayer and Raum provided a strong positive answer for non-amenable groups: a
transitive non-amenable closed subgroup of Aut(T,;) that does not act transitively on the bound-
ary is not even of Type I [HR19].

Since then, stronger and more general results have been obtained [CKM23] but Houdayer
and Raum’s results also fully answer Nebbia’s CCR conjecture in the positive for a particularly
interesting class of groups: the Burger-Mozes universal groups. Given T, the regular tree of finite
valency d € N3, one can color the unoriented edges of T; with labels in {1,...,d}. Then, every
pair (g, x) where g is an automorphism of T; and x is a vertex of T; induces a bijection of {1,...,d}
by keeping track of how g sends the edges around x to the edges around g(x). This bijection
is called the local action of g at x. Now, given a group F < Sym({1,...,d}), one can consider the
subgroup U(F) of Aut(T,) consisting of all the automorphisms g of T; such that for every vertex x
in Ty, the local action of g at x is given by an element of F. See below for a more formal definition
in the infinite dimensional case. Houdayer and Raum proved the following:

Theorem ([HR19]). Let T,; be the regular tree of finite valency d € N53 and let F < Sym({1,...,d}).
The following properties are equivalent:
(i) U(F)is of Type I,
(ii) U(F)is CCR,
(iii) the action F ~ {1,...d} is 2-transitive,
(iv) the action of U(F) on the boundary of T, is transitive.

As for the present paper, we will be studying an infinite dimensional analogue of these groups,
which will be non-locally compact Polish groups. Leaving the locally compact world allows for
much more pathological examples, going against most of the theory developed in the classical
setting: for example, LZ([O, 1],51) has a faithful representation but no non-trivial irreducible
representation (hence is not of Type I) [Gla98] while Homeo, ([0, 1]) has no non-trivial represen-
tation, not even on a reflexive Banach space [Meg01] (hence is of Type I for trivial reasons).

Still, the representations of such groups have been studied at least since the 1970’s. One of
the first examples of Type I non-locally compact groups is the infinite symmetric group S, of
all permutations of a countably infinite set [Lie72]. A few years later, Ol’Sanskii developed the
semigroup method and used it to find Type I groups by classifying all the unitary representations
of a variety of groups such as the isometry group of the separable (real or complex) Hilbert space,
the symplectic variations of it, as well as some infinite dimensional general linear groups over
finite fields (see the survey [O1’91]). More closely related to our work, Ol’Sanskii also classified
the irreducible representations of Aut(T) where T is a regular tree with infinite valency [O1’80].
Suppose G acts on T. Given X C T, Gy will denote the pointwise stabilizer of X while Gy will
denote the setwise stabilizer of X. A continuous irreducible unitary representation of G is non-
spherical if it admits no non-zero vector that is invariant under the action of a vertex stabilizer.
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For the notion of induced representation, we refer to [Bd20]. The part of Ol’Sanskii’s classification
we will be focusing on is the following;:

Theorem ([O1'80]). Let T be the regular tree with countably infinite valency and let G = Aut(T). The
non-spherical continuous irreducible unitary representations of Aut(T) are exactly the representations
of the form
Ind< (o)
Gx

where X C T is a finite subtree and o is an irreducible representation of the finite group Gx/Gy.

The representation theory of non-locally compact Polish groups has recently started to draw
more attention, in connection with model theory and descriptive set theory. Crucial to our ap-
proach will be Tsankov’s full classification of the unitary representations of Roelcke-precompact
non-archimedean Polish groups [Tsal2]. This result, which encompasses Lieberman’s and most of
Ol’sanskii’s, shows that Roelcke-precompact Polish groups behave similarly to compact groups
and are of Type I. This applies in particular to automorphism groups of 8,-categorical structures.
Another classification theorem in the same flavor has been obtained in [BJJ24]. This adds non-
Roelcke-precompact examples to the list, such as the isometry groups of Urysohn spaces, which
also are of Type I. These results motivate the study of infinite dimensional universal Burger-Mozes
groups. Indeed, one can carry out a similar construction as the one described above by replacing
T; with T, the regular tree with countably infinite valency, and F ~ {1,...,d} with Aut(M) ~ M
where MM is a given countably infinite first-order structure. We will be denoting by Auty(T)
the closed subgroup of Aut(T) arising in this manner (a precise definition is given below). An-
other infinite dimensional generalization of Burger-Mozes groups has already been introduced
by Smith [Smil7]. Using a different formalism that does not involve model theory, Smith studied
the structure and dynamics on bi-regular trees with a focus on locally compact instances of the
construction.

Back to our context and focusing on unitary representations, if N1is such that the results from
either [Tsa24] or [BJJ24] apply, we can obtain a classification similar to Ol’sanskii’s under some
additional hypotheses. On the side of [BJJ24], here is one way to make things work: We will say
that N has finite algebraicity if acly (A) is finite for every finite A € M and that M weakly eliminates
imaginaries if for every open subgroup U < I := Aut(M), there exists a finite subset A C 1T such
that: _

FA <UL FA .
Slightly extending the formalism of [BJJ24], we will say that M is dissociated if for every unitary
representation 7: I' ~ H and all algebraically closed subsets A,BC M,

Ha Ly, Ha

where H, is the subspace of I invariant vectors.
The following is a direct generalization of Ol’Sanskii’s classification for Aut(T) and can be
proved directly with almost the same proof.

Theorem 1. Let G := Auty(T) where Aut(M) ~ M is 2-transitive and M is dissociated with finite
algebraicity.
The non-spherical continuous irreducible unitary representations of G are exactly the representa-
tions of the form
Ind& (o)
Gx

where X CT is a finite subtree that is algebraically closed with respect to the action G ~ T and o is an
irreducible representation of the group Gx/Gy.

This paper is devoted to proving a similar classification theorem that allows structures which
do not weakly eliminates imaginaries. Namely, we will work with 8, categorical structures and
Tsankov’s classification, assuming that Aut(M) ~ M is primitive and has no algebraicity over sin-
gletons, not even in N9 (i.e. such that every a € M, aclpea(a) = dclrea(a)). See Theorem 2.22
for the full statement. Examples to which this applies is T = IP*°(g), the separable infinite di-
mensional projective space on the finite field IF,, where g is a power of a prime number. N1l can
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also be an Nj-categorical Fraissé limit, provided that one is careful enough with the relations and
functions at low arity.

The rest of the irreducible representations of Auty(T), namely the spherical ones, are indepen-
dent of M, provided that one assumes 2-transitivity in accordance with Nebbia’s CCR conjecture.
In this case, Ol’sanskii’s classification of the spherical representations of Aut(T) [O1’80, Sec. 5.3
5.6] applies as is to the subgroup Auty(T) and just as Aut(T) is a Type I group, we obtain the
following:

Corollary 1. Let M be a 2-transitive first-order structure, either as in Theorem 1 or both Xy-categorical
and such that:

Yae TTI, aClmeq(a) = dClmeq(ﬂ).
The group Autm(T) is of Type L
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Basile Morando for having meaningful conversations on both Burger-Mozes universal groups
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the University of Maryland, to whom I am deeply indebted for his continued mathematical and
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1. PRELIMINARIES

1.1. Colored trees.

Trees, i.e. acyclic connected graphs, will always be identified with the countable set of their
vertices. In other words "x € X" where X is a tree will always mean that x is a vertex of X. Let X
be a tree and let x,y € X. The set of vertices of X adjacent to x, called the neighbors of x, will be
denoted Vx(x). We will write x ~ p if x and y are adjacent vertices of a tree. If x has exactly one
neighbor in X, it will be called a leaf. We will denote by E(X) the set of unoriented edges of X, i.e.
the set of pairs {x,y} of adjacent vertices in X, and we will write Ex(x) for the set of all edges of
X that involve x.

A path from x to p is a tuple (x,...,x,,) of vertices of X such that x5 = x, x, =y and x; ~ x;,1
for every i < n. In this setting, n € IN is the length of this path. Trees naturally come with a metric
structure. Indeed, there exists a unique shortest path [x,y] from x to y and we can define d(x,y)
to be the length of [x,y]. Then (X,d) is a metric space and Aut(X) = Iso(X,d). We will write, for
every n € IN:

Bx(x,n)={z€e X, d(x,z) <n} and Sx(x,n)={z€eX, d(x,z) =n}.

For a subset or tuple E C X, (E) will denote the subtree of X generated by E, meaning:

(E) = U{[z,z'], z,z’ € E}.
If x and p are distinct, we will adopt the following notation for the cone arising from x to y:
Cone,(y) ={z€ X, v €[x,z]}.

T will denote the regular tree with countable infinite valency. Given a countably infinite first-
order structure M, an N-coloring of T is a labeling of its unoriented edges by elements of M,
i.e. a map E(T) — M, such that for every x € T, the restriction ¢: Ep(x) — N is a bijection. A
back and forth argument shows that there exists a unique f11-coloring of T up to conjugation by
an element of Aut(T). From now on, we thus fix such a structure M, an N-coloring ¢ and still
denote by T the resulting colored tree. Any additional hypothesis on N1 will be specified in each
result separately. The colored tree T is represented in Figure 1 (left) where x,y,z€ T, a,b € M
and c(x,v) =a, c(x,z) =b.

Given g € Aut(T) and x € T, the coloring c allows us to talk about the local action g, of g at x.
Indeed, let g, be the unique bijection of N1 such that the following diagram commutes:
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Er(x) —%— Er(g(x))

m—=m
Fixing x € T, the map g+ g, is a cocycle:
Vg, he Aut(T), (gh)y = gh(x) 0 hy -
Definition 1.1. Let Autp(T) be the following closed subgroup of Aut(T):

{g € Aut(T),Vx €T, g, € Aut(M)}.

Remark 1.2. This group clearly depends on the choice of the coloring c. However, if ¢’ is another
NM-coloring of T, the groups obtained using ¢ and ¢’ are conjugate in Aut(T) (by any element
of Aut(T) changing c into ¢’, which always exists). For this reason, and since c is fixed, we will
suppress it from the notations. In fact, from now on, I' will denote Aut(M) and G will denote
Autp(T).

This construction is the infinite-dimensional analogue of the one carried out in [BMO00, Sec. 3].
Groups arising from this construction are known as Burger-Mozes universal groups, at least in the
finite-dimensional case, since the seminal paper [BM00]. The terminology is motivated by the
following (adapted from the original result [BMO00, Prop. 3.2.2.] in the finite dimensional case):

Proposition 1.3. Suppose M is transitive and let H < Aut(T) be a vertex-transitive subgroup such that
for every x € T, the action H ~ Ex(x) is isomorphic to I ~ M. Then H is contained in a conjugate of
G by an element of Aut(T).

Interestingly, this construction predates [BM00] by at least two decades. Indeed, it appears
in [Ol’80] where Ol’sanskif classifies the irreducible continuous unitary representations of these
groups in the finite dimensional case under some transitivity hypothesis, as well as those of
Aut(T). The purpose of the present note is to get a similar classification for infinite dimensional
universal Burger-Mozes groups.

We start the study of these groups with a general method for building elements of G. All one
needs to provide is the image of an arbitrary vertex and a suitable collection of local actions:

Lemma 1.4. Let x,y € T and let (¥,),e1 € I'T. The following assertions are equivalent:
(i) there exists a unique g € G such that g(x)=yand g, =y, forallzeT,
(ii) foreveryz~z'in'T, y,(c(z,2)) = y,(c(z,2")).
Moreover, for every subtree X C T and every (¥,),ex € X such that (ii) holds on X, there exists
g€ Gsuchthat g(x)=vand g, =y, forall ze X.

Proof. O

Here are the different notions of transitivity we will be working with.

Definition 1.5. N1 1is said to be

1. transitive if the action I' ~ 11 has only one orbit.

2. 2-transitive if for every a = b, a’ = b’ € M, there exists y € I' such that y(a) =a’and y(b) = b’.

3. primitive if the action I' ~ M is transitive and for every (equivalently, some) a e N, [, is a
maximal subgroup of I'.

Similarly, given H < Aut(T), the action of H on T is said to be:

1. vertex-transitive if it has only one orbit.

2. edge-transitive if for every x,y,x’,y” € T with x ~ p and x” ~ y’, there exists & € H such that
h(x) =x"and h(y) =v’.

3. 2-transitive if for every x,y,x’,y" € T with d(x,y) = d(x’,y’), there exists h € H such that
h(x)=x"and h(y) =7v’.
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We will be going back and forth between the global action G ~ T and the local action I' ~ 1.
Given x € T, a set A C Ep(x) of edges around x identifies (using the coloring c) with a subset of
M. Next is how we will make identifications in the other direction:

Definition 1.6. Given a € N1 and x € T, we will denote by a, the unique vertex of T adjacent to
x such that the corresponding edge bears the label g, i.e. such that c¢(x,a,) = a. Similarly, if Ais a
subset of N11°9, it identifies at x with the following subtree of T:

Ay ={x}U{y e Vr(x), c(x,v) € A}.

Lemma 1.7.

1. G ~ T is vertex-transitive.
2. G~ Tis edge-transitive <= T ~ NUis transitive.

3. G ~Tis 2-transitive — T~ Mis 2-transitive.
Proof.
1. Let x,y € T. By Lemma 1.4, the following conditions define an element / of G sending x
toy:
- h(x) = Y

- Vze T, hz = ldm
2. See the case n =1 in the proof of 3.
3. Suppose G ~ T is 2-transitive and let a # b,a’ = b’ € N. Fix any x € T. Then:

d(ay,by)=2= d(a;, b;) ’

hence there exists ¢ € G such that g(a,) = a} and g(b,) = b;.. Necessarily, g(x) = x and g, is
an element of T that sends a to 4’ and b to b’.
Conversely, assume I' ~ N is 2-transitive. Let x,9,x’,y" € T be vertices satisfying
d(x,y) =d(x’,y’). We reason by induction on n = d(x, ).
-n=1:
Let a = c(x,y) and a’ = ¢(x’,y’). Since I' ~ N is transitive, there exists y € T such
that y(a) = a’. We can send x to x” using an automorphism g of T with constant local
action y, i.e. such that g, = ¥ for all z € T. Then g belongs to G by Lemma 1.4 and
also satisfies g(y) =v’.
-nzl:
Assume that the property is true for distances up to n and that d(x,y) = n+ 1. Let
z (resp. z’) be the unique element of [x,p] (resp. [x’,v’]) satisfying d(z,y) = 1 (resp.
d(z’,y’) = 1). Then d(x,z) = n = d(x’,z’) and, by the induction hypothesis, there is
¢ € G such that g(x) = x" and g(z) = 7.
Suppose g(y) = y’, otherwise there is nothing left to prove. Let w be the unique
element of [x’,z] such that d(w,z’) = 1. Let a = c(2’,g(¥)), 4’ = ¢c(z’,y’) and b = c¢(w, 2),
represented on Figure 2.

Distance n

FiGure 2. Situation after simplifications.

Then a,4’ and b are pairwise distinct elements of M1 hence there exists y € I' such that
y(a) = a’ and y(b) = b. By Lemma 1.4, the following conditions define an element &
of G

- h(z')=2,

- Yv € Coney(w), h, =id
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- Vv e T\ Cone, (w), h, = y.
By construction, h fixes [x’,z’] = g([x,z]) pointwise and sends g(y) to y’. Thus, the
element hg of G satisfies:

hg(x)=h(x)=x" and  hg(y)=y’
and the proof is finished.
O

As in the finite-dimensional case (see [BMO00, Sec. 3.2]), it is possible to give a precise structural
description of vertex stabilizers in G. Indeed, assume M is transitive and fix arbitrary reference
points a € M and x € T. For every n > 1, let G,, < Sym(St(x, 1)) be the permutation group induced
by the action of G, on Sy(x,n). Then:

1. (G,)u>1 is naturally an inverse sequence and G is the inverse limit of (G,,),>1,

2. Gy~T and foreveryn>1, G, ~G, = Fas(x’n) (

as permutation groups).

Recall that a subset E of a topological group H is Roelcke-precompact if for every open neigh-
borhood U of 1 in H, there exists a finite subset F C H such that E C UFU. A group is Roelcke-
precompact if it is Roelcke-precompact as a subset of itself and it is locally Roelcke-precompact if it
admits a Roelcke-precompact non-empty open subset. Since direct-products, semi-direct prod-
ucts and inverse limits of Roelcke-precompact groups are Roelcke-precompact [Tsal2, Prop. 2.2],

the previous structural claims imply the following:

Proposition 1.8. Assume M is transitive and such that Aut(M) is Roelcke-precompact. Then G :=
Aut(T) is locally Roelcke-precompact. More precisely, the stabilizers of vertices and edges in G are
Roelcke-precompact.

By the classical Ryll-Nardzewski theorem, this applies in particular when M is Ky-categorical.

Corollary 1.9. Assume M is 2-transitive and such that Aut(M) is Roelcke-precompact and let x € T.
Given K C G (resp. G*), the following properties are equivalent:

(i) K is coarsely bounded in G (resp. G*),
(ii) K is Roelcke-precompact in G (resp. G*),
(iii) K -x is bounded in T.

Proof. Since G and G* are locally Roelcke-precompact by Proposition 1.8, we refer to [Zie21,
Th. 14] for the equivalence between (i) and (i7). We now prove that (ii) and (iii) are equivalent.
The proofs for G and G* are the same since G4 = G} as soon as A C T is non-empty, hence we
only prove it for G.

Assume K is Roelcke-precompact in G. Then, G, being open, there exists finite subset F of K
such that K C G FGy. Let M := maxscpd(fx,x). If k € K, there exists u,v € G, and f € F such that
k=ufv. Then d(kx,x) = d(fvx,u'x) =d(fx,x) < M.

Regarding the converse, observe the following: For every g € G, the double coset G,gG, is
determined by d(g(x), x). Indeed, suppose g, h € G satisfy d(g(x), x) = d(h(x),x). Then, since G ~ T
is 2-transitive by Item 3 of Lemma 1.7, there exists u € G such that ug(x) = h(x) and u(x) = x. This
exactly means h € G, gGy, i.e. G,gG, = G, hG,.

Now since K - x is bounded, the set {d(kx,x), k € K} is finite. Fix F C K finite covering all the
possibilities. By what precedes, K € G,FG,. Now G is locally Roelcke-precompact by Propo-
sition 1.8 hence products of Roelcke-precompact subsets of G are Roelcke-precompact [Zie21,
Prop. 12]. Since G, is Roelcke-precompact in G by Proposition 1.8 and since finite sets are al-
ways Roelcke-precompact, so is K. O

1.2. Hilbert spaces and unitary representations. We recall here some basic results about Hilbert
spaces and unitary representations of permutation groups. First, the celebrated Alaoglu-Birkhoff
theorem will help us locate invariant vectors.

Theorem 1.10. Let H be a Hilbert and let K be any subgroup of U(H). Let p be the orthogonal
projection on HX, the closed subspace of K-invariant vector. Then, for every 1 € H, pn belongs to
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the norm-closed convex hull Conv(K - 1) of K - . More precisely, py is the only K-invariant vector in
Conv(K - 7).

Next is a convergence theorem for projections associated with a directed collection of sub-
spaces of a Hilbert space, which will allow us to carry out approximation arguments.

Lemma 1.11. Let H be a Hilbert space, (I,<) a directed set and (K;);c; a directed union of closed
subspaces of H. For every i € I, denote by p; the orthogonal projection onto KC;. Let K = J;¢; K; and
let p be the orthogonal projection onto K. Then (p;) converges to p in the strong operator topology, i.e.:

VEeH, IIPié—péll70-

We now recall classical definitions about permutation groups and their representations. Let
Q) be a countable set and let Sym(Q2) be the group of all bijections of Q). In this paper, (2 will be
either T, T®Y, N or M. We equip Sym(Q)) with the permutation group topology, i.e. the Polish
group topology given by pointwise convergence on () discrete. Let K be a closed permutation
group over (), i.e. a closed subgroup of Sym(Q), and let A C (). We will write K4 for the pointwise
stabilizer of A in K and K4 for the setwise stabilizer of A in K.

A continuous unitary representation of K is a continuous linear isometric action of K on a Hilbert
space. It is non-zero if H = 0. Throughout this paper, "representation” will always mean "contin-
uous unitary representation". Let 7: K ~ H and o: K ~ K be two representations of K. An
isomorphism between 1 and ¢ is a K-equivariant surjective isometry H — K. We will say that o
is (isomorphic to) a subrepresentation of 7, and write o C 7, if there exist a K-equivariant isomet-
ric embedding K — H. The subrepresentation o is proper if K identifies as a proper subspace
of K via the embedding. The representation 7 is irreducible if H # 0 and 7 admits no non-zero
proper subrepresentation. The unitary dual of K is the set of isomorphism classes of irreducible
representations of K.

If A is finite, we will write H 4 for the closed subspace of H consisting of K4-invariant vectors.
If A is infinite, we set:

HA = U HB .
BCA finite

If A = {a} is a singleton, we will write H, instead. Finally, p4 (or p,) will denote the orthogonal
projection on H 4. When several representations are at play, we will specify them in the notation
and write p’; instead.

Lemma 1.12. Let K be a closed permutation group over a set () and let 7t: K ~ H. Then H = Hg,
ie.:

Hy isdensein 'H .
ACQ finite

The following lemma is a well known fact about induced representations (for the definition
and basic properties of induction, we refer to [Fol95, Chap. 6]). Since we will only be inducing
from open subgroups U < G, we will always use the counting measure on the discrete countable
space G/U.

Lemma 1.13. Let K be a topological group and let U < K be an open subgroup. Let 0: U ~ K be a
unitary representation of U on a Hilbert space K. Consider the representation 1 == IndX (o) of K and
denote by H the underlying Hilbert space. Let

Ho={f € H, Suppf C U}.
Then H, is stable under the action of U and 71|U: U ~ H, is isomorphic to o.

Definition 1.14. Let H be a Hilbert space and H;,H,, H3 be closed subspaces of H such that
H3 € Hy N'H,y. We will write H; ©H; for the orthogonal complement of H3 in H; and:

Hq L, H, if H9H; L H,oH;.
Denoting by py, ps, p3 the orthogonal projections on H;, H, and H; respectively, this is equivalent
top1p2 =p3
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2. IRREDUCIBLE REPRESENTATIONS OF Autm(T)

The study of the irreducible continuous unitary representations of G splits into two very dis-
tinct parts. In the classical terminology, an irreducible representations 7t: G ~ H is said to be
spherical if there exists x € T such that H, = 0. Ol’Sanskil’s classification of spherical irreducible
representation of Aut(T), which corresponds to M being the trivial structure, actually extends
with the same proof to every 2-transitive subgroup of Aut(T). In particular, it applies to G pro-
vided that 1T is 2-transitive (see Lemma 1.7). Moreover, in this, case, this part of the unitary dual
of G is actually independent of M:

Theorem 2.1 ([OI'80]). Let H < Aut(T) be a 2-transitive subgroup (e.g. H = G assuming M is 2-
transitive). Let 1t be a spherical irreducible representation of Aut(T). Then T[|H is a spherical irreducible
representation of H. Moreover, every spherical irreducible representation of H arises uniquely in this
manner.

In other words, the correspondence 1t +—> n(H that sends a representation of Aut(T) to its restriction

to H induces a bijective correspondence between the spherical irreducible representations of Aut(T) and
H.

Proof. This follows easily from [O1’80, Sec. 5.3-5.6], the proof of which applies word for word to
H < Aut(T) under the 2-transitivity hypothesis. O

On the other hand, the non-spherical irreducible representations of G heavily depend on M. In
particular, if 0: I' ~ H is a unitary representation of I, then it can be pulled to a representation
of G, via the restriction morphism G, — I given by ¢ — g,. The restriction morphism being
surjective, this representation of G, retains all the richness of ¢ and can in turn be induced to G.
For that reason, the representation theory of G is at least as complicated as that of I' hence we
must restrict our attention to instances of the construction where the representation theory of I
is understood. A good candidate for such a class are the Roelcke-precompact closed permutation
groups. Indeed, the unitary representations of these groups have been fully classified in [Tsal2].
Since we will need transitivity hypothesis, we will actually work with I' being presented as the
automorphism group of an 8j-categorical structure. Recall that, by the Ryll-Nardzewski Theo-
rem, for N countable and transitive, I is Roelcke-precompact if and only if N is Xy-categorical.

The notion of algebraicity, appearing at different levels, will be key. Here is the permutation
group theoretic definition of algebraicity. Fortunately, when N is Nj-categorical, it coincides
with the model theoretical definition, both for ' ~ Nl and I ~ N¢4.

Definition 2.2. Let H be a closed permutation group over a set () and let A be a subset of Q.

1. An element x € Q) is said to be algebraic (resp. definable) over A (with respect to the action
of H on Q) if there exists a finite subset B C A such that the orbit Hp - x if finite (resp x
is fixed by Hp). The algebraic closure (resp. definable closure) of A, denoted aclg(A) (resp.
dclg(A)), is the set of elements of Q) that are algebraic (resp. definable) over A. The set A
is algebraically closed if it is equal to its algebraic closure.

2. the set A is said to be definable (with respect to the action of H on Q) if Hp, is open in H.

3. Ais said to be locally H-finite if its intersection with every orbit of the action of H on (2 is
finite.

In the special case of the action I' ~ M°®1, we will write Dy, for the set of definable, locally
finite and algebraically subsets of M°d. When N is Ky-categorical, understanding D, is key for
understanding the representation theory of I'. Indeed, the algebraically closed subset of N4
one needs to input in Lemma 2.4 in order to recover a classification theorem such as in [Tsal2]
are exactly the elements of Dy,. They form a lattice of sets (D, G A, V) where AAB=ANB
and AV B = acljeq(A U B) for every A, B € M1, The following nice properties of this lattice are
extracted from Section 2.1 of the preprint [Tsa24].

Proposition 2.3. Assuming M is No-categorical, the following properties hold:

1. The elements of D, are exactly the subsets of M1 of the form aclmeq(e) for some e € M1
(equivalently, of the form aclpeq(A) for some finite A C N9).
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2. For every D € D, the trace D N M is finite.
3. (Dm, S A, V) is a well-founded ordered lattice, i.e. every non-empty subset of Dy, admits a
minimal element.

From the classification of [Tsal2], the authors of [JT22] extracted the following lemma (Prop.
3.4 therein), which states that Nj-categorical structures are dissociated in a slightly more gen-
eral sense than that of [BJJ24]. This fundamental property, tightly tying the permutation group
structure of I' to its representation theory, is enough to recover the full classification theorem in
a straightforward way (see the proof of Corollary 2.21 below).

Lemma 2.4. Assume N is 8g-categorical. Let w: I' ~ H be a unitary representation of I'. For all
algebraically closed subsets A, B of M*9,

Ha Lryns Ha s
i.e. PAPB = PAnB-

As one can see from the above lemma, understanding the representation theory of I' when N1
is Ny-categorical involves the imaginaries of M, i.e. equivalence classes of definable equivalence
relations on N1. See [Hod93, Sec. 4.3] for the definition of imaginaries and the structure N1¢4
associated to N1.

To take them into account in the present construction, we need to introduce a slightly larger
colored tree than T. In this way, let T®? be the tree obtained from T by adding a countably
infinite collection of leaves around each of its vertices. Note that T C T®1. We also extend c to an
M¢d—coloring of T®? in such a way (essentially unique) that:

Vx €T, [c: Etea(x) — MY is a bijection].

The resulting colored tree will still be denoted T and is represented in Figure 1 (right). We
extend definition 1.6 to that context.

Convention. In graphical representations such as in Figure 1, solid vertices and thick edges, in
black, will always correspond to elements of T or labels in M. On the other hand, hollowed
vertices and thin edges, in blue, will always correspond to elements of T®I\T or labels in NT*I\ M.

We will adopt similar conventions in writing: x, v,z will denote vertices of T or T®Y and 4, b,¢
will denote elements of N or M°d. Finally, X,Y, Z will denote subtrees of T or T®1 while A, B,C
will denote subsets of 1T or NT4.

Remark 2.5. It is a classical fact that the action Aut(N1) ~ N naturally extends to an action on
Meq, yielding a canonical identification Aut(M) ~ Aut(M°9) (see [Hod93, Th. 4.3.3]). For that
reason, the action Autp(T) ~ T naturally extends to an action on T®9.

Next is an explicit link between the actions G ~ T®? and I' ~ M*4.
Lemma 2.6. Let X be a subtree of T* and x € X. Let Z = X U Vpeq(x) and let A = Ex(x) be seen as a
subset of M. The restriction map

Gx — T4, g g

is continuous, open and surjective. In particular, Gx/Gy ~ T4 (as topological groups).
Proof. We first show surjectivity. Let y € I, (). We will define an extension g € G of . Reasoning
by induction, we assume g is defined on Bp(x,n) for some n > 1 and extend it to By(x,n+1). To
that aim, we fix y € St(x,n) and extend g to Vp(y). It suffices to choose a local action at v, i.e.
specify g,. If y € X, then it is fixed by g and we set g, = id. Otherwise, let z be the unique
neighbor of y with d(z,x) = n—1. We necessarily have z € T. We propagate the local action of g at
z,i.e. weset g, =g,.

Openness and continuity are clear and imply the last isomorphism. O

Corollary 2.7. Let X be a subtree of T*1 and x € X. Write A = Ex(x), seen as a subset of M®1. For
every y € Vreq(x), the map

Gx -y —Ty-c(x,y), g(v) > gx(c(x, )
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is a bijection.

The following lemma clarifies what we will mean when we ask of a representation to be trivial
on a stabilizer.
Lemma 2.8. Let X be a subtree of T®. For every continuous unitary representation o: Gy — U(H),
the following properties are equivalent:

(i) Gx Ckero,

(ii) H = Hy.
Proof. Assume Gy C kero. Then o factors as a continuous unitary representation of Gx/Gx.
Moreover, the natural map Gx/Gx — Sym(X) is injective, continuous and has closed image.

Since the groups are Polish, it is a homeomorphic embedding that identifies Gx/Gy with a closed
permutation group over X. Then H = Hy follows from Lemma 1.12. The converse is trivial. [

We now define the class of sets that will play for G ~ T the role that D, plays for I' ~ N®4.

Definition 2.9. A subtree X of T®dis admissible if it is definable, locally G-finite and algebraically
closed in G ~ T®d. An admissible subtree X is trivial if Gx = G or Gx = G, for some x € T. The
set of admissible subtrees of T4 will be denoted Adm(T¢9).

Just as elements of Dy, can be used to classify the irreducible representations of Aut(M) if
M is Ny-categorical, we will use the admissible subtrees to get a similar classification for G. We
begin the study of Adm(T®1) with a very elementary observation:

Proposition 2.10. For every admissible subtree X of T®,
1. if X is non-empty, XN'T =0,
2. the leaves of X all lie in T®I\T.

Proof.

1. If XNT =0, X is a singleton {x}. Moreover, x € T*I\T hence is adjacent to a unique vertex
y € T. Then Gy fixes y € X, contradicting the fact that X is algebraically closed.

2. Suppose X is non-empty and let x € X N'T. Since X is algebraically closed in T, we have
dclpea (@), € Vx(x) and x is not a leaf in X. Indeed, because of the formal definition of
neq, |dClmeq | > 2.

O

The next step in relating elements of D, to admissible subtrees of T¢1 is the following:

Proposition 2.11. Let X be a subtree of T®1 such that X N'T = (. The following equivalences hold:

1. X is locally G-finite < X NTis finite and Ex(x) is locally T-finite in M*9 for
everyx € XN'T.

2. X is algebraically closed <  Ex(x) is algebraically closed in M®4 for every x e X N'T.

Moreover, if X N'T is finite:
3. Xis definable <  Ex(x) is definable in M°®4 for every x e X N'T.

Proof.

1. Assume X is locally G-finite. Then X NT is indeed finite since T is a single orbit under
the action of G (Item 1 of Lemma 1.7). Let x € X N'T and let A be the subset of N
corresponding to Ex(x). Let us show that A is I'-finite.

Fix a e M®. Then T -a ~ G, -a, by Corollary 2.7, hence:

lr-anA=Gy-a,NVx(x)CG-a,NX.
Since X is locally G-finite, G-a, N X is finite and sois I'-aN A.
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Conversely, assume that X N T is finite and that Ex(z) is locally I'-finite for every z €
XNT. Let x e T¢Y. Since G-T =T and X NT is assumed to be finite, it suffices to deal with
the case x € T*I\T. Then x is a leaf, adjacent to a unique vertex y € T. Setting a = c(x, ),
we have:

G-xNX= U G-xNVy(z) = U (T-a), N Vy(2),
zeXNT zeXNT
which is finite, as a finite union of finite sets.
2. Assume X is algebraically closed with respect to the action G ~ T®4. Fix x € X and let A
be the subset of N1°1 corresponding to Ex(x). Let us show that A is algebraically closed.
Let A’ C A be finite. For every a € acljjeq(A’), Corollary 2.7 yields:

Lar-a=~ Gy -ay .

In particular, aclpea(A’), € acltea(Ay) C aclpea(X) = X. Thus aclpea(A’), C Vx(x) U {x} i.e.
aClmeq (A/) C A.

Conversely, assume that Ex(x) is algebraically closed in M°d for every x € XNT. Let X’
be a finite subset of X. Up to replacing X’ with a larger finite subset of X, we assume it is
a subtree of T®d and that X’NT = 0. Let x € aclyeq(X’). Let y be the unique vertex of X’
witnessing d(x,y) = d(x, X’). We reason by induction on n = d(x,p).

- n=0:

Then y € X and there is nothing to prove.

- n>0:

Let z be the unique vertex of T adjacent to y that satisfies d(z,x) =n—1. Let A be
the subset of N1°9 corresponding to Ex(y) and A’ the one corresponding to Ex(y). By
Corollary 2.7,

Gy -z=Iyp-c(y,2)
Hence ¢(y,z) € aclpea(A’) € A and z € X. We can thus add z to X’ and apply the
induction hypothesis to get x € X.
3. Assume that X is definable (the finiteness hypothesis is not needed for this direction). Let
x € XNT and let A be the subset of MY corresponding to Ex(x). By Lemma 2.6, the image
of Gx N G, under the restriction map g — g, is open. Since, clearly, it is included in T},
A is definable in N9,
Conversely, let X be a subtree of T¢? such that X N T is finite and Ex(x) is definable in
M4 for every x € X NT. Since X is a tree, we can assume X NT is non-empty. Note that:

Gy > ﬂ (N;Vx(x)u{x}-
xeXNT

"l;he intersection being finite, it suffices to show that for every~deﬁnable subset A C N9,
Ga, is open in G. Now if A is a definable subset of 114, then G4 is the inverse image of
T, under the restriction map G, —> I'. This map being continuous by Lemma 2.6, GAx is
open.

O

As a consequence, we get a local characterization of admissible subtrees.

Corollary 2.12. Let X be a subtree of T®4. The following conditions are equivalent:
(i) X is admissible,
(ii) X NT is finite and for every x € X NT, the subset Ex(x) of M9 is definable, locally T-finite and
algebraically closed.

Moreover, if X is admissible and non-trivial, then Gy is Roelcke-precompact.

Proof. The equivalences follow directly from Proposition 2.11.

As for the last statement, it is a classical fact that a group which stabilizes a non-empty finite
diameter tree fixes either a vertex or an edge. Since X N T is finite, X has finite diameter and
the claim follows from Proposition 1.8 and from the fact that an open subgroup of a Roelcke-
precompact group is also a Roelcke-precompact group. O
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Similarly to what happens with elements of D, in 114, admissible subtrees of T®1 are always
infinite but are algebraic closures of finite subtrees if N is Ky-categorical.

Lemma 2.13. Assume N is Ny-categorical. Let X be a non-trivial admissible subtree of T¢1. There
exists a finite subtree Xy C X such that aclyea(Xg) = X. Moreover, every such X, satisfies Gx, < Gx
with finite index.

Proof. Using Item 1 in Proposition 2.3, for every x € X NT, there exists e(x) € M such that
Ex(x) =~ acleq(e(x)). Define:
Xo=(XNT)U{e(x)y, xe XNT},

which is a finite subtree of X. Fix x € X\ X;. We will show that x € aclteq(Xj).
Necessarily, x is an element of T®*I\T hence a leaf in X. Let y be its unique neighbor, which is
an element of X N'T. Then, using Corollary 2.7:

Gxo X =Ly -c(x),
which is finite by choice of e(y). Hence X C aclyeq(X() and the other inclusion is trivial.
For the finite index assertion, recall that the commensurator of Gx, in Gy is given by:
CommGX(GXO) ={ge Gy, (GXOgGXO)/GXO and GXO\(GXOgGXO) are finite.}

Lemma 2.7 in [Tsal2] states that open subgroups of a Roelcke-precompact group have finite
index in their commensurator. Since Gy is Roelcke-precompact by Corollary 2.12, proving the
the following is enough to conclude:

Gx = Commgx(Gxo).

Let g € Gx,. Since Xj is finite,

(GxogGXO)/Gxo is finite. < VYx € X,, Gx, g x is finite.
— Vxe Xy, g-xeaclpe(Xp)
— g-XpCaclrea(Xp) =X
— g-XCX

Similarly, GXO\(GXOgGXO) is finite if and only if g~! - X C X and the claim is proved. O

Using the admissible subtrees, we can exhibit a family of irreducible representations of G
without any additional hypothesis on 1. To that aim, we first provide a classical argument in
the study of invariant spaces associated with induced representations of permutation groups.

Lemma 2.14. Let X, Y be admissible subtrees of T®I and let o0 Gx ~ K be a unitary representation of
Gy that is trivial on Gx. Denote 1t := Indg (0) and let H be the underlying Hilbert space of 1. Then:
X

Hy={feH, VgeG, [f(g=0=>gXCY]L.
In particular,
Hx = {f € H, Supp(f) € Gx}
and py is the multiplication by the indicator map of Gx.

Proof. Write Hy = (f € H, Yg € G, [f(g) # 0 = gX C Y]}. Since this is a closed subspace of H, it
suffices to show that Hy» C Hy for every finite subtree Y’ C Y to get Hy C Hy. Hence, let Y/ C Y
be finite.

Let f € Hy and assume g € G is such that f(g) # 0. Then ||f(-)] is constant on Gy gGyx.
Since f € ZZ(G/EX), it implies that (GY,gEX)/EX is finite. Let Xy C X be as in Lemma 2.13. In

particular, Gy, < Gy with finite index, hence (GY’ngo)/Gxo is also finite. Equivalently, since
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Xy is finite, every element of g(Xj) has a finite orbit under the action of Gy,. In other words,
g(X()) - aClTeq(Y,) - aClTeq(Y). Then:

(1) 8(X) = g(aclyea(Xp)) = aclrea(g(Xp)) € aclrea(Y) =Y.
Conversely, let f € Hy.

Claim. We can assume that Supp f is a finite union of Gy cosets and that there exists a finite Gx-
invariant subset X’ C X such that:

(2) VgEG, f(g)GHX; .
Proof of the claim. Let ¢ > 0. Since Hy is closed, we can assume that Supp(f) is a finite union of

Gx-cosets and pick hy, ..., hy, € G such that Supp f = | |1<j<, /1jGx. By Lemma 2.8, K = Kx and,

for every j < m, there exists X; C X finite and &; € /CX]. such that [|&; - f(h;)]| < \/% Since X is

locally G-finite, every element of X has a finite orbit under the action of Gx. In particular,
X = Gy - U X;

1<i<m

is finite and stable under the action of Gy.
Define f, as follows:

_ a(u‘l)éj if g = hju for some j < m and some u € Gx,
Vg€ G filg) = { 0 otherwise.
Then f, € Hy and ||f — f.|| < e. Since Hy is closed, it suffices to show that f.(g) € Hx for every

g € Supp f. to finish the proof of the claim. Let g € Supp f,. There exists j < m and u € Gx such
that ¢ = hju. Then:

f;,(g) = G(u_l )E] € ICu—l (X”) = ICX"
Oclaim

Next, let Xy C X be as in Lemma 2.13. Since Gy, has finite index in Gy, Supp f is a finite
union of Gy, -cosets and we can write:

Supp(f) = U 8iGx,
1<isn

where g,...,8, € G.
Let Yy C Y be as in Lemma 2.13 and define:

Y =YoU | &i(X))
1<isn
which is a finite subset of Y . Indeed, recall that g, ..., g, belong to Supp(f) hence satisfy g;(X) C
Y for every i < n. Moreover, since X’ is Gx-stable:

(3) Vi<nVgegiGx, gX')=g(X)CY"
Let us show that f is Gy -invariant. Fix u € Gy, and g € G.
- Ifg ¢41Gx,U---Ug,Gx,:
Thenu~'g e u™' g Gy, U---Uu"'g,Gx,. But for every i <n, g;(Xo) C Y"hence u™'g;Gx, =
8iGx, and g, u~'g ¢ Supp f. In other words:
(u-f)g)=flu'g)=0=f(g).

- If g € giGy, for some i < n:

Then u~'g € Gy,g. But Gy g = 8Gg-1(y7) € g§Gx’ by (3) and there is v € Gy such that
u~lg = gv. Thus:
(u-f)(g) = flu"'g)=f(gv) = o (v )(f(g) = f(g)

where the last equality follows from (2).
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For the special case Y = X, note that since X is locally G-finite, we have for every g € G:
gXcX — gX=X.
O

The previous lemma can be used to give a list a of irreducible representations of G while also
identifying the repetitions in that list.

Recall that if H,H’ are conjugate subgroups of G, say gHg™! = H’ for some g € G, and if 7 is a
representation of H’ on a Hilbert space H, then 78: H ~ H is given by 78(h) = t(ghg™!) for every
heH.

Proposition 2.15. Assume M is 8y-categorical. Let X be an admissible subtree of T¢Y and ¢ be an
irreducible representation of Gx which is trivial on Gx. Then 1 = Indg (o) is irreducible.
X

Moreover, if Y is another admissible subtree of T¢ and 7 is an irreducible representation of Gy
which is trivial on Gy and such that 7’ = Indg (7) is isomorphic to T, there exists g € G such that
Y

g(X)=Y and o ~ 78.

Proof. We first prove the irreducibility of 7 by showing that every non-zero vector in H is G-
cyclic. Indeed, let f € H\{0}. Up to translation, we can assume that f(1) = 0, or equivalently by
Lemma 2.14 that px(f) = 0. By Lemma 1.11 and the Alaoglu-Birkhoff Theorem 1.10, px(f) lies
in the G-cyclic hull of f hence the following claim finishes the proof of the irreducibility of

Claim. Every non-zero vector of Hyx is G-cyclic in H.
Proof of the claim. Using Lemmas 2.14 and 1.13, the representation
g, GX ~ Hx

is isomorphic to o hence irreducible. Thus, every non-zero vector of Hy is Gx-cyclic in Hy, a
space which itself is G-cyclic in H. Oclaim

Next, assume 7t and 7" are isomorphic and denote by H and H’ their respective underlying
Hilbert space. Then H} ~Hx # 0. Let f € H\{0} and g € G such that f(g) # 0. By Lemma 2.14, g
satisfies g(Y) € X. By symmetry, we can find h € G such that h(X) C Y. Since X and Y are locally
G-finite, this implies h(X) = Y. In particular, hGyh™! = Gy. Finally, using Lemmas 2.14 and 1.13
again for the first and last isomorphisms:

— — , — Th ~ , h
a:(cXAHX):(cXAH;():(cXRH;):(GYAH;) .y
O

The previous results does give us a list of irreducible representations of G but it might actually
be empty: we have no result regarding the existence of admissible trees yet. We thus investigate
the converse of Lemma 2.13. If there is A C N such that acly;(A) is infinite, or if there is a,b € M
distinct such that aclpy(a) = acljy(b), then the converse fails for lack of local G-finiteness. How-
ever, these are the only obstruction. In particular, if N7 is 8y-categorical and has no algebraicity
over singletons, we obtain a way to produce admissible subtrees.

Proposition 2.16. Assume N is 8y-categorical and has no algebraicity over singletons, i.e. such that
aclpy(a) = {a} for every a € M. Let X C T®1 be a finite subset. Then aclyeq(X) is an admissible subtree.

More generally, if X is an admissible subtree of T®1 and Y C T®1 is either a finite subset or an
admissible subtree, aclyeq(X UY) is an admissible subtree.

Proof. Let X be a finite subset of T®l. Since aclyteq(X) = aclteq((X)) and (X) is finite, we may
assume that X is a tree. By transitivity of G ~ T, aclteq(@) = 0 and we may assume that X is
non-empty. Moreover, if X N T = 0, then X is a singleton {x} where x € T*I\T and there exists
a unique y € T such that x ~y. Then Gy = Gy, hence aclre(X) = aclre (X U {y}) and we can
assume that X N'T = (.
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Claim. After these simplifications, we have:
aclpea(X)NT = U (aclpea(Ex(x)) N M), ,
xeXNT
In particular, aclyeq(X) N'T is finite.
Proof of the claim. Since MM has no algebraicity on singletons, Gx assigns an infinite orbit to every
vertex y € T that such that d(y, X) > 2 (we are using the assumption that X is a tree). Thus, if

v € aclteq(X) NT\X, then d(y, X) = 1. Since XN'T =0, we even have d(y, X NT) = 1. Moreover, for
every z € T such that z ~ x, we have by Corollary 2.7, seeing Ex(x) as a finite subset of N¢4:

Gx -z=1Ig, () c(x,9)

Thus:
aclyea(X)NT = | ] (aclpea(X)n M), = | ] (aclmea(Ex(x)) n M),
xeXNT xeXNT
as claimed.
Finally, for every x € X N T, aclmea(Ex(x)) N M is finite by Items 1 and 2 of Proposition 2.3
hence so is aclteq (X)NT. Oclaim

By the above claim, we can assume that aclpeq(X) N'T C X. Let x € aclteq(X)NT = X NT. For
every y ~ x in T®4, we have by Corollary 2.7:

Gx v =Tpy) (%),

hence E;cjpeq(x)(%) = aclpea(Ex(x)) is locally finite, algebraically closed and definable in 1% by
Items 1 and 2 of Proposition 2.3. We conclude with Proposition 2.12.

Suppose now X is an admissible subtree and Y is a finite subset of T®d. By Lemma 2.13, there
exists a finite subset Xy C T such that X = aclteq(Xg). Then aclteq(X UY) = aclyteq(Xy U Y) and
the first part of the proof applies. Similarly, if Y is an admissible subtree, apply Lemma 2.13
again to get Y finite such that Y = aclyeq(Yy). Then aclpeq(X U Y) = aclpeq(Xg U Yy) and the first
part of the proof applies. O

The previous result also allows us to endow Adm(T®%) with a lattice structure. Indeed, assume
M is Ny-categorical and has no algebraicity over singletons. Then, given two admissible subtrees
X, Y CT®, XAY :=XNY is admissible by Corollary 2.12 and X V Y := aclteq(X U Y) is also
admissible by Proposition 2.16. Moreover, since D, is well-founded and X N T is finite if X
is admissible, the local characterization of admissible trees from Corollary 2.12 shows that the
lattice (Adm(T¢9),C, A, V) is also well founded:

Corollary 2.17. If M is Ng-categorical and has no algebraicity over singletons, (Adm(T¢9),C, A, V) is
a well-founded lattice.

To finish the classification, we will need some slightly stronger hypotheses on M, namely
primitivity as well as the following:

Yae m, aClﬂleq (a) = dClmeq(ﬂ).

The latter hypothesis can be rephrased as follows: for every a € M, I, admits no proper subgroup
of finite index. These are indeed stronger than what we assumed above:

Lemma 2.18. Assume M is primitive and such that:
Yae m, aClmeq(a) = dClmeq(ﬂ).

Then:
aClmeq (@) = dClmeq (@)
If moreover M is Ny-categorical, then M has no algebraicity over singletons:

Yae M, aclpy(a) = {a}.
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Proof. Write I' for Aut(N). Let e € aclyeq(0). Fixing any a € M, we have e € aclyeq(0) C aclyeq(a) =
dclpeq(a). Hence T, < T, and, by primitivity, I, =T, or I, =T. If I, =T}, then a € dcl(0), contradict-
ing the transitivity hypothesis. Thus I, = I and e € dclfeq(@). The other inclusion is trivial.

For the last statement, assume N1 is 8j-categorical and consider the equivalence relation ~ on
M given by a ~ b if acly(a) = aclyy(b). This relation is I'-invariant hence trivial by primitivity of
M. There are two cases:

— for every a,b e M, acljya = acly b:

Then, for every a,b € M, a € acljya = acly; b and thus aclpy b = M. This is a contradiction
to the well known fact that, in an N;-categorical structure, the algebraic closure of a finite
set is finite.

— forevery a=be M, aclpya = acly b:

Let a,b € M and suppose that b € acl(a). Then I, - b is finite, i.e. I,/(I, N1}) is finite.
Since I}, has no proper finite index subgroup, I;, C I},. But I}, is a proper subgroup of I by
transitivity of M. Thus, by primitivity of M again, I, =T}, and b = a.

O

Example 2.19. Evidently, the trivial structure with equality as sole relation, which corresponds
to Aut(T), the original context of [O1’80], satisfies the above hypothesis. More generally, any ;-
categorical structure that admits weak elimination of imaginaries and has no algebraicity over
singletons will do (primitivity is automatic in this case, see [JJ25, Cor. 3.7]). This applies in
particular to the Random graph or the projectivization of the countable vector space over a finite
field. More examples to come.

We now turn to the key lemma for finding induced subrepresentations, adapted from [O1’80,
Lem. 5.1]. It can be interpreted as a weak form of dissociation (compare with Lemma 2.4) for the
representations of G.

Lemma 2.20. Assume M is 8y-categorical, primitive and satisfies:
Yae m, aClmeq(a) = dClmeq([l).

Let X, Y C T® be admissible subtrees, with X non-trivial and X ¢ Y.
There exists a proper admissible subtree X’ C X such that for every representation w: G ~ H of G,

we have pypx = pypx--

Proof. First, note that one can always replace Y with a larger admissible subtree. Indeed, suppose
Y’ is an admissible subtree of T¢1 such that Y C Y’. Suppose also there is X’ C X such that for
every representation 7t: G ~ H of G, we have py'px = py’px’. Since Y C Y’ we have pypy = py
and:

PYPx =PyPy’Px =PyPy'Px’ =PYPx’-

Let x € X\Y be at maximal distance from Y (admissible trees have finite diameter). Then x
must be a leaf in X hence adjacent to a unique vertex y € X N T. We distinguish two cases:

- Casel:ycY.
Set:

X =X\[Vx(\Y] .

In other words, remove from X all vertices that are adjacent to y but don’t belong to Y. All
of the vertices so removed are leaves in X by maximality of d(x,Y), hence X’ is a tree. It is
strictly contained in X since x ¢ X’. Moreover, every x” € X’\{y} satisfies Ex/(x") = Ex(x’).
By Corollary 2.12, in order to check that X’ is admissible, it suffices to check that Ex/(p)
is locally I'-finite, definable and algebraically closed in M®d. But Ex/(y) = Ex(y) N Ey() is
indeed locally I'-finite, definable and algebraically closed as the intersection of two such
sets.

Claim. Up to replacing Y with a larger admissible tree, we can assume that X' C Y.
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Proof of the claim. Let Y’ = acltea(YUX’). By Proposition 2.16, this is an admissible subtree

of T¢1 that contains both Y and X’. Moreover, Vy,(y) = Vy(y) thus x ¢ Y  and X £ Y.

Uclaim

We are thus left with the following simplified situation, illustrated in Figure 3: X\Y is

only comprised of neighbors of y. Note that the elements of X\Y are all leaves in X hence
lie in T®I\T by Proposition 2.10.

Ficure 3. Situation after simplifications.

Using Lemma 2.13, let X, YO,X(') be finite subtree of T4 such that
aClTeq (Xo) = X, aClTeq(Yo) =Y and aCITeq (Xé) = X/.

Up to replacing X, Yy, X) with larger finite trees, we can assume that X,NY, = X and that
v € X(. Let A=Ex (v), B=Ey,(y)and C = Ex;(v), seen as finite subsets of M°d. Again, we
can assume that aclpea(A) = Ex(), aclyea(B) = Ey(y) and aclyea(C) = Ex/(v).

Define:

Z =Xy (ME9), = Xo U (M*T), .

Then GX(’) leaves Z, and thus H, stable. Since the action GX(; ~ Hy is trivial on Gy,

and Gy;/Gz identifies to I by Lemma 2.6, restricting and factorizing 7 gives rise to a
representation

o:Ilc~K:=H.
Similarly, Gx,/Gz ~ T4 and Gy,/(Gy, N Gz) = I3, both subgroups of Ic. Applying Lemma
2.4 to the representation o: I ~ K and recalling that aclpeq(A) N aclpea(B) = aclprea(C)
yields:
chlmeq(B)chlmeq A) = chlmeq(C)

Claim. Projections associated with o identify with restrictions of projections associated with 1t
as follows:

chlmeq(A) =PX M, chlmeq(B) = P?’HZ & chlmeq(C) = P§'|Hz'

Proof of the claim. We prove it for Y only, the other identifications are similar and more
straightforward since X, X’ C Z. First, note that:

ngz =HyNHy.
Indeed, let £ € Hy and € > 0. By Lemma 1.11, there exists Y; C Y finite such that:
o, & - piell <.

Up to replacing Y; with a larger finite subset of Y, we can assume X C Y;. Then Gy,
leaves Z, and hence Hy, stable. In particular, using the Alaoglu-Birkhoff Theorem 1.10,
we get:

pgl é € Hz.
Since € was arbitrarily small and Hy is closed, p}& € Hz. The other inclusion is trivial.

Now p¥ Hy and p ) are both orthogonal projectors defined on Hy. To prove they

o
aclpeq(B
are equal, it suffices to show they have the same image, i.e. that Hy N'Hz = Kyl eq(B)-
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Let £ e Hy N'Hz and € > 0. As above, there exists Y; a finite subset of Y containing X
such that ||p§l<§ -¢&||<eand pgl Hz C Hz. Let By = Vy,(y) seen as a finite subset of M4
Let y €I, . Using surjectivity in Lemma 2.6, pick g € Gy, such that g, =y. Then:

o (y)p¥, (&) = 7(g)pF. & = PF. &,
hence p’;l(cf) € Kp, C Kaclmeq(B)' Since ¢ was arbitrarily small and Ky ..q(p) is closed,
& € Kaclyeq(B)-
Conversely, let By C aclyeq(B) be finite. Let Y; = Xj U (By)y. Clearly, Ky CHz NHy, C
Hz NHy. Since By was arbitrary and Hz N'Hy is closed, Kyc1eq(8) € Hz N Hy-
Oclaim

By the previous claim, and because X, X’ C Z:
PYPX =PyPXPz = P§c1meq(B)P§clmeq )Pz = chlmeq(C)P% =pXx:P7 =Px’

which finishes the proof of the first case.

Case2:yeY.
Let z be the unique neighbor of y in T®1 such that d(z,Y) =d(y,Y) - 1.

Claim. We can assume that z € X.

Proof of the claim. Indeed, suppose that z ¢ X. By maximality of d(x,Y), X must be con-
tained in (NM®9),. More precisely, there is a definable, locally I'-finite and algebraically
closed subset A C M such that X = A,. By Item 2 of Proposition 2.10, we also have
ANM =0. Writing a = c(y, z), we distinguish two cases:
- If ACaclyeq(a): then, A = dclN®Y(D). Indeed, since aclpreq(a) = dclpea(a) by hypoth-
esis, for every e € A we have I, <I,. By primitivity of 11 and since AN N =0, we have
[, =T, i.e. e € dclpea(D). The other inclusion is trivial. Now, Gx = G , a contradiction
to X being non-trivial.
— If A € acljrea(a): Replace Y with aclteq(Y U {y}) and apply Case 1.

Ueclaim
Claim. We can assume that:
Vy' e (Vx(2)\Y)NT, Ex(y’) = aclpea(c(z,3")).
Proof of the claim. Indeed, suppose there exists y” € (Vx(z)\Y) N T such that:

Ex(y') Z aclpea(c(z,)) -
Replacing y with y” and x with any x" € Vx(y’)\ acljea(c(z, ")), we can assume that y = y’.
Finally, replacing Y with aclyeq(Y U {y’}), we can apply Case 1.
Oclaim
We now assume the statements in both of the two previous claim and define X’ by
cutting away all the branches that emerge from z outside of Y, i.e.:

X = aClTeq X\ U Conez(y')).
y'eVx(2\Y
Note that all vertices so removed are at distance at most 2 from z and that y ¢ X’.
Similarly to the previous case, we can replace Y with aclpeq (YUX’) to get that X" = XNY.
Finally, set:
Z=XU(Mmed),u U aclpea(c(z,')), -
y'eVr(z)
The situation is slightly different than in Case 1. Instead of seeing the structure N
around y, we see a seemingly slightly larger structure around z. It can be thought of as
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the diameter 4 labeled subtree qu C T

(me).u | aclpeale(z )y,
y’eVr(z)
represented in Figure 4.

S
\xv/i (aclyrea b) \{b}

b
- v (;O v s‘

AN

Ficure 4. The larger structure.

This subtree of T®? is stable under the action of G, and since aclyeq(a) = dclppeq(a) for
every a € M, the permutation actions G, ~ qu and I' ~ M are essentially the same. The
dissociation argument at the end of the proof of Case 1, invoking Lemma 2.4, applies
verbatim modulo the identification of the actions G, ~ qu and I ~ M.

O

The previous lemma can be used to find induced representations in any representation of G
with no spherical part:

Corollary 2.21. Assume N is Rg-categorical, primitive and satisfies:
Yae m, aClmeq ((/'l) = dClmeq(ﬂ).

Let t: G ~ H be a non-zero unitary representation of G which has no spherical part, i.e. such
that H, = 0 for every x € T. There exists a non-trivial admissible subtree X C T®1 and an irreducible
representation o: Gx/Gx —~ K such that Indg (0)Cm.

X

Proof. By Lemma 1.12, there exists a finite subtree Y C T such that Hy = 0. Then Z := aclpeq(Y)
is an admissible subtree of Td by Proposition 2.16 and Lemma 2.18 such that Hy; 2 Hy # 0. In
particular:

{X e Adm(T®Y), Hx =0} =0

and we can fix a minimal element X in this set. Since 7t has no spherical part, X must be non-
trivial.

Claim. For every g,h € G such that gGx = hGy, we have:
(4) n(g)Hx L m(h)Hx .



INFINITE DIMENSIONAL UNIVERSAL BURGER-MOZES GROUPS 21

Proof of the claim. Up to replacing g with h™'g, we can assume that h = 1. Let &1 € Hy. It
follows:

(5) (r(8)&,m) = (m(@)px & pxn) = (P (R, pxn) = (m()E, Porxopx)-

Recalling that X is locally G-finite and g & Gy, we get X Z g(X). Applying Lemma 2.20 and by
minimality of X, we get py(x)px = 0. Equation (5) now gives (1(¢)<,7) = 0 and the claim follows.

Oclaim

Now, consider the action of (~}X on Hy, which gives factorizes to a representation o of the
group Gx/Gx. Form n’ = Indg (0) with underlying space H’. Let (g;);c; be a system of coset
X

representatives of G/Gy. Define a map ®: H' — H in the following way:

VfeH, ®(f)= ) m(g)f(g).
i€l
By definition of the norm on H’ and by Equation (4), @ is well defined and isometric. Note
that it does not depend on the choice of (g;), for if h™lg € Gy, then 7(g)f(g) = m(g)f (hh™1g) =
7(g)(0 (g~ h)f (h)) = wc(h)f (h). Similarly, it is easily seen that @ is a morphism of representations.
To conclude, recall that Gy is Roelcke-precompact by Corollary 2.12 hence o splits as a sum of
irreducible subrepresentations by the main result of [Tsal2]. Moreover, by the basic properties

of induction, if T C o, then IndS (1) CInd& (o). O
Gx Gx

We are now ready to state and finish the proof of our main theorem.

Theorem 2.22. Assume M is Ny-categorical, primitive and satisfies:
Vae M, aclpeq(a) = dclprea(a).

1. Let X be a non-trivial admissible subtree of T and let o be an irreducible representation of Gy.
Then Indg (0) is an irreducible representation of G.
X

2. If Y is another admissible subtree of T®d and t is an irreducible representation of Autm(Y) such
that Indg (7) is isomorphic to Indg (0), then there exists g € G such that g(X) =Y and ©8 is
Y X

isomorphic to o.
3. Every non-spherical irreducible representation of G is of the above form.

Proof. The only thing left to prove is Item 3. To that aim, let 7= be a non-spherical irreducible
unitary representation of G. In particular, 7 is non-zero and, by Corollary 2.21, there exists a
non-trivial admissible subtree X of T°1 and an irreducible representation o of GX/GX such that
Indgx(a) C 7. This must be an equality by irreducibility of .

t

It is worth pointing out that Corollary 2.21 combined with Zorn’s Lemma also has the follow-
ing consequence:

Corollary 2.23. Assume M is a primitive Xy-categorical structure such that:
Vae M, aclpeq(a) = delgrea(a).

Let 1t be a unitary representation of Autp (T) with no spherical part (meaning H, = 0 for every/some
x € T). Then 7 is dissociated and splits as a sum of non-spherical irreducible subrepresentations of the
above form.

Finally, our classification is close enough to Ol’Sanskii’s so that his proof of Aut(T) being Type
I1[OI'80, Th. 5.7] applies almost word for word, hence Corollary 1 is also proved (recall that if M
is 2-transitive, then MM is primitive).
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Corollary 2.24. Assume N is Nq-categorical, 2-transitive and satisfies:
Vae M, aclpeq(a) = dclprea(a).
Then G is of Type 1.

Example 2.25. This applies in particular to 2-transitive Nj-categorical structures that weakly
eliminates imaginaries, such as the projectivization PGL(c0, g) of the countable vector space over
a finite field IF,. More examples to come.

3. THE HowE-MOORE PROPERTY

3.1. A model theoretical structureon T. Let £ = (R, n;);c; be the language of M1, assumed to be
relational. In this notation, I is an index set and R; is a relation symbol of arity n; for every i € I.
Define L1 := (R;,n;+1);c; U{(~,2)}. Then T, once M-colored with yx, is naturally an Lt-structure
which satisfies Aut[;T (T) = G. Indeed, interpret ~ in T as the edge relation and, for every i € I,
interpret R; in T as follows:

RT ={xAd, ae Vp(x)", x(x,a) € R;}.
This structure is still denoted T.
In order to capture the index 2 subgroup G*, we also define L} := L1 U {(¢,2)} where ¢ is
interpreted in T as:
Vx,veT, [e(x,v) &< dr(x,p)is even]

and denote this structure by T™.
Definition 3.1. Given a subtree X C T and x € X, write A(X, x) = {c(x,v), v € Vx(x)} C T
Proposition 3.2. Aut, (T) = Auty(T) and Aut/: (T) = Aut(T)

Proof. Suppose g € Aut,, (M). Clearly, g is a tree automorphism. Moreover, let x € T, a C V(x)
and R € L. Then:
O

Definition 3.3. Let G be a topological group. A subset A of G is said to be coarsely bounded if for
every continuous and G-invariant écart d on G, the d-diameter of A is finite.

Definition 3.4. Let H be a topological group. A continuous map f: H — C vanishes at infinity
if for every ¢ > 0, there exists a coarsely bounded set A C H such that |f(g)| < € for every g € H\A.
We will denote by Cy(H) the set of such functions.

Given a sequence (g,),eN in a topological group, we will write g, — oo if (g,) eventually
escapes every coarsely bounded subset of H. The geometry of our groups being nice enough, the
above notion is captured by such sequences:

Lemma 3.5. Assume N is N, categorical and 2-transitive. Let f € C(G*). The following properties
are equivalent:

(i) f vanishes at infinity,

(ii) for every (g,) € G*N, ¢, —> co implies f(g,) — 0.

Proof. (i) = (ii) is obviously true in higher generality. We prove the converse by contrapositive:
suppose f does not satisfy (i). Then, there exists € > 0 such that N := {g € G, |f(g)| > €} is not
coarsely bounded. By Corollary 1.9, N - x is unbounded in T. Thus, for every n € IN, there exists
gy € N such that d(g,x,x) > n. We have g, — oo but |f(g,)| > ¢, contradicting (ii). O

Definition 3.6. A topological group G has the Howe-Moore property if for every representation
1t: G ~ H with no invariant vector, all the matrix coefficients of G arising from 7t vanish at
infinity.
Theorem 3.7. Assume N is No-categorical and 2-transitive. The group Autf, (T) has the Howe-Moore
property.
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In the following lemmas, we assume N to be N(-categorical and 2-transitive. We also fix 7 € G*
a step 2 translation in G* and denote by w™ and w™ the ends of its axis A =]w™, ™[, assuming
"x — w* as n — +oo. The proof follows the classical one from the finite arity case. The
main difference is that since our groups are not locally compact, a finer Cartan decomposition
is required. Namely, we give a description of G4\G"/Gp for every finite subtrees A,B C T, not
just A = B = {x}, seeing this double quotient as a space of types. From now on, such A and B
non-empty are fixed. Let n = |A|, m = |B| and write A = {ay,...,a,}, a = (ay,...,a,), B={by,... b}
and b = (b ..., b,,).
Definition 3.8. Let \V be a structure and let X =y AZ where y = (y,...,v,) and Z = (zy,...,2,,) are
tuple of variable. For p = p(X) € Sz(/\), we define 71 (p) = p|§ €S5(N) and my(p) = p|§ €S5(N)

Throughout, the distance at play is the graph distance, definable using using only ~, and
d(X,7) = oo is the type-definable condition [d(X,y) > n for every n] which means that X and v are
not contained in the same connected component.

Lemma 3.9. Consider the map
®: G4\G*/Gg — Sx(T"),  GhgGh+— tpr. (@,g-D).

1. @ is a homeomorphism onto its image

2. Im(®) = {p(%), 71(p) = tpr+ @), 7 —tpT+( ) and d(y y, < oo},
3. Im(®) = {p(f), m(p) =tpy+ (@), ™ = tpT+( )} =Im(P) U {po} where po, is the unique
type in Sx(T*) such that 7t,(p) = tpT+( a), my(p) = tpT+( ) and P F[d(,2) = o0].

Given g € G* such that g(B)NA =0, let xi and x% be the unique vertices of A and B respectively
such that d(A, g(B)) =d (xi,g (x%)). Let also a® (resp. p3) be the element of N1 coloring the unique

edge going from xi toward g(B) (resp. from g(x%) toward A). Write ti =tpy (ocg 'A(xi)) and
-1
tg =tpy ((gxﬁ) - B8 ’B(x%) ) Finally, define:

W(g) = (v, x5, 15, 15,4 (A, 8(B)) .

Lemma 3.10. Let g,h € G* be such that g(B)NA =0 and h(B)N A = 0. The following are equivalent:

(i) GagGp = GahGp,

(ii) W(g) = W(h).
Proof. Clearly, W is left G4-invariant and right Gg-invariant hence (i) = (ii). Conversely, suppose
W(g) = W(h). We will write x4 := xi = xZ and xp := x% = xg. Let C be the finite subtree of T
generated by A and g(B),i.e C=AUg(B)U{xy,...,x;} whered =d(A, g(B))—1, x1 ~ x4, x5 ~ g(xp)
and x; ~ x;,1 for every i <d. Then, the shortest path from A to g(B)is x4 =xg ~x; ~ -+~ x5 ~
X441 = g(xp). Similarly, let x4 = yo ~y; ~ -+ ~ ¥4 ~ v441 = h(xp) be the shortest path from A to
h(B). To carry out the proof, we will build some u € G4 such that ug(b) = h(b) for every b € B by
specifying local actions on C and applying Lemma 1.4. Recalling that §-categorical structures
are homogeneous, we proceed as follows:

A: Sincetpp (a8|A(xy)) = ti = tZ =tpp (ah |[A(xa) ), there exists y,, € [4(x,) such that y,, (af)
a’. For every a € A\{x,), set y, = idm.
g(B): Similarly, since t§ = tB, there exists Vg(xy) € My IB(xy (ng )_ such that y,(x,) - S = ﬂh- For
every b € B\{xg}, set y¢(p) = hy (gp)” !
[x1,x4]: By 2-transitivity of M, we can find for every i € {1,...,d} some y,, € I such that y,, -
c(xi,Xi1) = €(¥i,¥ir1) and yy, - c(x;, x-1) = ¢(¥i, 9i-1)-
Then (y.).cc satisfies the conditions of Lemma 1.4 hence gives u € G such that u, = y, for

every c € C and u(xy) = x4. By construction, u € G4 and ug(b) = h(b) for every b € B. We have
thus shown that h € G4¢Gp i.e. G4gGp = G4hGpg. The situation is represented in Figure 5.
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Ficure 5. Local actions at x4 and g(xp). edges are sent to edges.
At the bottom, y,, fixes A(x4) and sends a¥ to a”. Up above, Ve(xp) TEVErses the
action of g, on B(xg) and replaces it with that of h,, while sending ¢ to ﬁh. The
dotted circles represent V,p(g(b)) and Vj(h(b)) respectively.

O

Note that the first four components of W take values in a finite set (recall that M is assumed
to be Ny-categorical).

Proof. O

Lemma 3.11. There exists F C G* finite such that:
G" =G,F{t", n> 0} FGp.

Proof. Let K :={g € G*, g(B)N A = 0}. Then K is Roelcke-precompact in G* by Lemma 1.8. Thus
the existence of Fy C K C G* such that K C G4 FyGg. It remains to deal with G*\K.
With an eye towards Lemma 3.10, fixa€ A, b€ B,t4 € S1(A(a)), tg € S1(B(b)) where we assume
t4 and tp are realized by some a € M\A(a) and g € N\B(b) respectively. Let also 6 = 0 if d(a,b)
is even or 0 =1 if d(a,b) is odd. We will produce g = g(b,tg) and h = h(a,t4) in G* such that for
every n €N,
W(ht"g)=(a,b,ta,tg,2(n+1)-0).

Note that for every g € G*, we have d(a,g(b)) mod 2 = d(a,b) mod 2 hence this will be enough
to conclude, after setting

F:=FyU U {g(b, tg), h(a,ta} .

Let c be the unique neighbor of b such that x(b,c) = . Write A = {x;, i € Z} in such a way that
T(x;) = x;,, for every i € Z and d(x,b) is even. By Item 3 of Lemma 1.7, G ~ T is 2-transitive
and we can find g € G such that g(b) = x5 and g(c) = x_;. Note that since d(g(b),b) = d(xq, b) is
even, g € G*.

Next, let d be the unique neighbor of a such that x(a,d) = «, let d’ be any neighbor of d distinct
from a and fix A’ a bi-infinite geodesic in T such that A’NA = {a} and d,d’ € A. Using 2-transitivity
of M and Lemma 1.4, one can find & € G such that:

- h(A)= 4,
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FiGure 6. Realization of a given value of W. Follow the dotted arrows to track
where B and c are sent. edges are sent to edges.

| (a,d) ifd(xg,d)iseven,
B (h(x_l)'h(x()))_{ (d,d’) othergvise.

Again, by parity of d(h(xg),x(), we in fact have h € G*. The situation is represented in Figure 6
(in the case d(xg,d) even). Because for every n € IN, no edge of ht"g(B) ever belongs to A’, we
indeed have:

VnelN, W(ht"g)=(xa,xp ta, tg2(n+1)=9).
U

Just as in the finite arity case, we have reduced the problem to studying the vanishing matrix
coefficients of G on the abelian semigroup {z", n e N!:

Corollary 3.12. Let t: G* ~ H be a representation of G* and suppose there exists &, € H such that
fgnr, does not vanish at infinity. Then, there exists £, 1’ € H such that:

fé’fﬂ,(”(") —+ 0.

n—+oo

Proof. Suppose f;q does not vanish at infinity. Approximating & and # by invariant vectors using
Lemma 1.12 yields a uniform approximation of f. We can thus assume &,# € H4 for some non-
empty finite subtree A C T. By Lemma 3.5, there exists ¢ > 0 and (g,) € G*™ such that g, —> oo
while |fg}1(g,,)| > ¢ for every n € N. By Lemma 3.11, we have G* = G4F{t", n € N}JFG4 for

some finite subset F C G* and we can write g, = u,, f, 7 f,/u, for some u,,u, € Gu, f,, f, € F and
k, € N. Up to extraction, we can assume that (f,) and (f,/) are constant sequences and denote
their respective value by f and f”.

We claim that k,, — +co0. Indeed, G4 and F are coarsely bounded by Corollary 1.9, hence
n —> co. Again, since finite sets are coarsely bounded, we necessarily have k,, — +co.

Set &’ == nt(f’)& and 1’ == 7(f~!)n. Then, for all n € N:

FE5(8n) = Fatn f 7 ) = (re () e f Y )& (£~ el ) = (re(T) €’y = £7, (20).

ok
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We thus have

fgf’ﬁ,(rk“) > ¢ for every n € N while k,, — +o0. In particular, fgf’q,(fc”) — 0. O

The classical proof of Lubotzky and Mozes now carries through verbatim. More precisely,
Propositions 1 and 2 in [LM92] hold for G*. Once combined, they yield the following, which
finishes the proof of Theorem 3.7:

Proposition 3.13. Let 7w: Gt ~ H be a representation of G* with no G*-invariant vector. Then
fgfq(”c”) —> 0 for every &, € H.

Proof. See Propositions 1 and 2 in [LM92]. O

3.2. Model theory. Want to describe the theory of T and (countable) models of it. Given a tuple a
in T and a vertex c € T, ¢ ~ a will mean ¢ ~ a; for every i < n. We also define localized quantifiers,
to be used in building ﬁ% formulae.

Definition 3.14.
1. Let xy be a variable. The localized existential quantifier is Ay ~ xg,:= Iy, y ~ X¥A. Similarly,
the localized universal quantifier is Vy ~X,:=Vy,y ~ X —.
2. Given @(x) € Ly, we define the formula ¢(x(, %) € [I% by replacing every quantifier by its
localized version, always using the same variable x(, and inputting x, as the extra variable
in every relation symbol.

Example 3.15. If ¢ = Vx,R(x) where R is a relation in Ly, then @r(xg) is the L’%l formula Vx ~
x0, R(xq,x) = Yxg, x ~ xg — R(xg,x). More generally, if ¢ = ¥x;3x;... AVR; ;(X;;), then ¢1(xo) =
L)

Vxp ~xpdx3 ~ xg... AVR; j(Xo,%; ;). Note that under our assumptions on M, every formula in Ly
i
is equivalent up to Th(M) to one of the above form, i.e. a positive prenex formula.

Proposition 3.16. Let ¢(X) € L be a positive formula. For every ag € T and a € T* such that ay ~ G,
the following are equivalent:
(i) T & @r(ag,a),
(ii) Mk @(x(ag, a))-
In particular, if @ is a positive sentence, M £ @ if and only if T £ Vx, py(x).

Proof. We prove it by induction on the complexity of ¢. If ¢ is atomic, this is clear by definition
of the Lyy-structure T. Stability under boolean combinations of formulae is also trivial.
O

Definition 3.17. Let

TN =ThyMu ] Vxerl), Vavy [x~y = [er(xy) © er@ 0]l
peThe, (M)

Definition 3.18. Let 7)1 be the union of the following sets of formulae:

— 7T, the theory of T as a graph. It can be reduced to axioms expressing that T is connected,
acyclic and has infinitely many edges around every vertex.

- {¥x @r(x), ¢ € Th (M)}, expressing that we see a model of N around each vertex,

- {VxVy [x ~y = [p1(x,v) & @1(v,x)]] , p(x) € Ly}, ensuring that copies of N linked by an
edge agree on the Ly -type of the edge.

Proposition 3.19. Assume M is 8y-categorical. Let M be a countable model of T\. As a graph,
M is an everywhere infinite forest, i.e. a disjoint union of the graph T. Moreover, there exists xy an
M-coloring of M such that for every ¢(X) € Ly and every a,b € M such that a ~ b, denoting by N the
connected component of a,

ME @r(a,b) = N E @r(a,b) = Med(x(ab).
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Proof. In particular, M is a model of 7, i.e. a locally infinite graph such that every connected
component is isomorphic to T as a graph. Fixing a € M, we can view M, := Vj(a) as an Ly
structure. Indeed, every relation symbol R of arity n in Ly can be interpreted as {b € M,, M E
R(a,b)}. By construction, we have for every ¢(¥) € Ly and b € M,:

(6) M, £ @(b) — ME @r(a,b).

Thus, in view of the second item of the definition of 7,7, we see that The, (Mg) = The (M).
Since N is Ny-categorical, M, is isomorphic to N and we can fix an isomorphism y,.

In turn, given b € M such that b ~ a, Equation (6) and the second item in the definition of 71
ensure that tpMa(b) = tp, (a). Since No-categorical structures are homogeneous (REF XXX), we
can pick y;: My — Nl an isomorphism of Lpy-structures such that y;(a) = y,(b).

Repeating this process inductively on the connected component of 4 and then separately on
every connected component of M, we obtain a family (y,),c ¢ such that:

1. For every a € M, y, is an isomorphism of Ly;-structures M, — N,
2. For every a,b € M such that a ~ b, we have y,(b) = y,(a).

Now, define x ,; on the edges of N by setting:
xm(a,b) = y,(b) for every a,b e M such thata~b.

Then ) is an M-coloring of every connected component of M such that for every ¢(x) € L and
every a,b € M such that a ~ b, denoting by N the connected component of 4,

ME @r(a,b) — N E @r(a,b) — MeP(x(ab).
O

Corollary 3.20. Assume M is 8q-categorical. The countable models of "' are exactly the countable
disjoint unions of copies of T. More precisely, a model M of T is a locally infinite graph such that
every connected component of M is isomorphic to T as an Ly -structure.

Definition 3.21.
1. A typein p € Sx(7,,) encodes a tree if every realization of p is connected.
2. Givenpe S;(TOL“ ), we will denote by p.. the restriction of p to the language of graphs and
say that p encodes a tree if p.. does.

Lemma 3.22. Let p € S;(TOL“) and write X = (xy,...,x,). If p encodes a tree, then p. and the set
{pr(x1,%), @(X) € Ly, i <n}Np determine p.

Proof. O

Proposition 3.23. Assume M is Ny-categorical.

1. TM is complete.

2. T is the prime model of T,

3. The countable models of T, are exactly the countable disjoint unions of copies of T. More
precisely, a model M of T is a locally infinite graph such that every connected component is
isomorphic to T (as an Ly-structure). In this context, each union of components of M is an
elementary substructure of M.

Note that, given n € IN, there exists a formula ¢, (x) in the language of graphs that says "X has
diameter at most n". Abuse of notation: different arity = different formulae. We will say that

atypepe€ SY(TOLR) has bounded diameter if ¢, € p for some n € IN. For 9,z C X, we will write
(d(y,2) = 00) € pif (d(X, V) > n) € p for every n (the latter can be expressed as a legitimate formula
in the language of graphs).

Lemma 3.24. Assume N is Ny-categorical and let p € Sy(TogI). Then p is isolated if and only if it has
bounded diameter.
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Proof. Suppose p is isolated. Then p is realized in the prime model T. Since T is connected and p
has finitely many variable, p has bounded diameter.

Conversely, suppose p has bounded diameter. There exists a countable model of 77 that
realizes p, say M and @ € M*. By Proposition 3.19, M is a countable unions of copies of T, each
copy being an elementary substructure by ??. Since p has finite diameter, a is entirely contained
in a single copy of T. Thus p is realized in the prime model of 77! (Item 2 of Proposition 2?)
hence must be isolated [TZ12, Th. 4.5.3]. d

Corollary 3.25. Letp € Sy(TOgI). Up to reordering X, there exists a unique partition ¥ = x(1)A---Ax(n)
such that p; = p|W.) is isolated for every i < k and (d(x(i),x(j)) = o) € p for every i # j.

Conversely, for every partition x(1)A--- Ax(n) of X and for all isolated types p, € SW(TOOm), .. Pr €
S%(Tg‘ ), there exists a unique p € S;(Togl) that decomposes accordingly.

Proof. To decompose p, realize it in a countable model of 7.\, say by M and @ € M*. By Item
3 of Proposition 3.19, M is a countable unions of copies of T. Partition X = (1) A -+ A x(n)
depending on which connected component each element of 7 falls into. In this decomposition, p;
has bounded diameter for every i < k, hence is isolated by Lemma 3.24, and (d(%, Tj)) =o0)Ep
for every i # j. This decomposition is clearly unique.

Conversely, suppose a decomposition x = x(1) A--- Ax(n) and isolated types py,..., py are given.
Recalling that isolated types are realized in every model, we can realize each p; in a distinct copy

M,; of T, say by m € Mf(i). Then M := M; U---U My is a model 7' and even an elementary

extension of each of the M; by Item 3 of Proposition 3.19. Thus p := tpM(m A--+ Aa(k)) admits
the desired decomposition. O

Corollary 3.26.
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