
INFINITE DIMENSIONAL UNIVERSAL BURGER-MOZES GROUPS

RÉMI BARRITAULT

Abstract. Given a countably infinite first-order structureM and a suitable coloring of the regular
tree of countably infinite valency T, one can define the subgroup AutM(T) of Aut(T) consisting of all
the automorphisms of T with local actions prescribed by Aut(M) ↷M. This is a generalization of a
construction carried out by Burger and Mozes in the finite valency case.

Under some transitivity and mild model-theoretic hypotheses on M, we fully classify the con-
tinuous irreducible unitary representation of AutM(T). This is achieved by building on a similar
classification by Ol’šanskiı̆ for the whole group Aut(T), which can be seen as the special case where
M is the trivial structure. This provides new examples of locally Roelcke-precompact Polish groups
of Type I.

Introduction

In abstract harmonic analysis, the notion of Type I, a very general property taking roots in
the study of von Neumann algebras, forms a dividing line between topological groups whose
representation theory is tractable and those for which it is too wild to be fully understood. We
refer to [Bd20] for a formal definition and only give an illustration: by a celebrated theorem of
Glimm [Gli61], a locally compact group G is of Type I if and only if every continuous unitary
representation of G decomposes uniquely as a direct integral of irreducible representations. For
such reasons, deciding if a given topological group G is of Type I or not is a crucial step in
studying G from the prism of its representation theory.

For fundamental reasons, all abelian groups are of Type I, even as discrete groups. In fact,
a discrete group is of Type I if and only if it is virtually abelian by a classical result of Thoma
[Tho68]. In the non-discrete case, the picture is a lot richer while remaining, to this day, far less
complete. Since locally compact groups come with natural operator algebras associated to them,
most of the effort in the study of Type I groups has been devoted to the locally compact case. First,
compact groups are of Type I and, more generally, all locally compact groups are determined by
their irreducible unitary representation by the Gel’fand-Raikov Theorem. In particular, they all
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Figure 1. The colored trees T and Teq.
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have faithful representations. Examples of Type I locally group include all of the connected semi-
simple [Har54] or nilpotent Lie groups [Dix59, Kir61] and all connected real algebraic groups
[Dix57]. On the other hand, the Mautner group is a solvable connected Lie group which is not of
Type I (due to Mautner, unpublished, see [Bag78]).

At the opposite end of connected Lie groups are the totally disconnected locally compact
groups, for which a large part of the landscape is occupied by those who act on trees. In 1999,
Nebbia obtained a striking result linking the regularity of the representation theory of such a
group to the transitivity of its action on the tree (the CCR property is a strengthening of the Type
I property):

Theorem ([Neb99]). Let Td be the regular tree of finite valency d ∈ N⩾3 and let G be a closed uni-
modular subgroup of Aut(Td) acting transitively on Td .

If G is CCR, then G acts transitively on the boundary of X.

In the same paper, Nebbia conjectured that the converse also holds, i.e. that having a very tran-
sitive action is the same as having a very tame representation theory for such groups. Nebbia’s
CCR conjecture is still open in its full generality but some substantial progress has been made
recently. Houdayer and Raum provided a strong positive answer for non-amenable groups: a
transitive non-amenable closed subgroup of Aut(Td) that does not act transitively on the bound-
ary is not even of Type I [HR19].

Since then, stronger and more general results have been obtained [CKM23] but Houdayer
and Raum’s results also fully answer Nebbia’s CCR conjecture in the positive for a particularly
interesting class of groups: the Burger-Mozes universal groups. Given Td the regular tree of finite
valency d ∈N⩾3, one can color the unoriented edges of Td with labels in {1, . . . ,d}. Then, every
pair (g,x) where g is an automorphism of Td and x is a vertex of Td induces a bijection of {1, . . . ,d}
by keeping track of how g sends the edges around x to the edges around g(x). This bijection
is called the local action of g at x. Now, given a group F ⩽ Sym({1, . . . ,d}), one can consider the
subgroup U (F) of Aut(Td) consisting of all the automorphisms g of Td such that for every vertex x
in Td , the local action of g at x is given by an element of F. See below for a more formal definition
in the infinite dimensional case. Houdayer and Raum proved the following:

Theorem ([HR19]). Let Td be the regular tree of finite valency d ∈N⩾3 and let F ⩽ Sym({1, . . . ,d}).
The following properties are equivalent:

(i) U (F) is of Type I,
(ii) U (F) is CCR,

(iii) the action F ↷ {1, . . .d} is 2-transitive,
(iv) the action of U (F) on the boundary of Td is transitive.

As for the present paper, we will be studying an infinite dimensional analogue of these groups,
which will be non-locally compact Polish groups. Leaving the locally compact world allows for
much more pathological examples, going against most of the theory developed in the classical
setting: for example, L2([0,1],S1) has a faithful representation but no non-trivial irreducible
representation (hence is not of Type I) [Gla98] while Homeo+([0,1]) has no non-trivial represen-
tation, not even on a reflexive Banach space [Meg01] (hence is of Type I for trivial reasons).

Still, the representations of such groups have been studied at least since the 1970’s. One of
the first examples of Type I non-locally compact groups is the infinite symmetric group S∞ of
all permutations of a countably infinite set [Lie72]. A few years later, Ol’šanskiı̆ developed the
semigroup method and used it to find Type I groups by classifying all the unitary representations
of a variety of groups such as the isometry group of the separable (real or complex) Hilbert space,
the symplectic variations of it, as well as some infinite dimensional general linear groups over
finite fields (see the survey [Ol’91]). More closely related to our work, Ol’šanskiı̆ also classified
the irreducible representations of Aut(T ) where T is a regular tree with infinite valency [Ol’80].
Suppose G acts on T. Given X ⊆ T, GX will denote the pointwise stabilizer of X while G̃X will
denote the setwise stabilizer of X. A continuous irreducible unitary representation of G is non-
spherical if it admits no non-zero vector that is invariant under the action of a vertex stabilizer.
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For the notion of induced representation, we refer to [Bd20]. The part of Ol’šanskiı̆’s classification
we will be focusing on is the following:

Theorem ([Ol’80]). Let T be the regular tree with countably infinite valency and let G = Aut(T). The
non-spherical continuous irreducible unitary representations of Aut(T) are exactly the representations
of the form

IndG
G̃X

(σ )

where X ⊆ T is a finite subtree and σ is an irreducible representation of the finite group G̃X /GX .

The representation theory of non-locally compact Polish groups has recently started to draw
more attention, in connection with model theory and descriptive set theory. Crucial to our ap-
proach will be Tsankov’s full classification of the unitary representations of Roelcke-precompact
non-archimedean Polish groups [Tsa12]. This result, which encompasses Lieberman’s and most of
Ol’šanskiı̆’s, shows that Roelcke-precompact Polish groups behave similarly to compact groups
and are of Type I. This applies in particular to automorphism groups of ℵ0-categorical structures.
Another classification theorem in the same flavor has been obtained in [BJJ24]. This adds non-
Roelcke-precompact examples to the list, such as the isometry groups of Urysohn spaces, which
also are of Type I. These results motivate the study of infinite dimensional universal Burger-Mozes
groups. Indeed, one can carry out a similar construction as the one described above by replacing
Td with T, the regular tree with countably infinite valency, and F ↷ {1, ...,d} with Aut(M) ↷ M

where M is a given countably infinite first-order structure. We will be denoting by AutM(T)
the closed subgroup of Aut(T) arising in this manner (a precise definition is given below). An-
other infinite dimensional generalization of Burger-Mozes groups has already been introduced
by Smith [Smi17]. Using a different formalism that does not involve model theory, Smith studied
the structure and dynamics on bi-regular trees with a focus on locally compact instances of the
construction.

Back to our context and focusing on unitary representations, if M is such that the results from
either [Tsa24] or [BJJ24] apply, we can obtain a classification similar to Ol’šanskiı̆’s under some
additional hypotheses. On the side of [BJJ24], here is one way to make things work: We will say
that M has finite algebraicity if aclM(A) is finite for every finite A ⊆M and that M weakly eliminates
imaginaries if for every open subgroup U ⩽ Γ B Aut(M), there exists a finite subset A ⊆M such
that:

ΓA ⩽U ⩽ Γ̃A .

Slightly extending the formalism of [BJJ24], we will say that M is dissociated if for every unitary
representation π : Γ ↷H and all algebraically closed subsets A,B ⊆M,

HA ⊥HA∩B HB

where HA is the subspace of ΓA invariant vectors.
The following is a direct generalization of Ol’šanskiı̆’s classification for Aut(T) and can be

proved directly with almost the same proof.

Theorem 1. Let G B AutM(T) where Aut(M) ↷ M is 2-transitive and M is dissociated with finite
algebraicity.

The non-spherical continuous irreducible unitary representations of G are exactly the representa-
tions of the form

IndG
G̃X

(σ )

where X ⊆ T is a finite subtree that is algebraically closed with respect to the action G↷ T and σ is an
irreducible representation of the group G̃X /GX .

This paper is devoted to proving a similar classification theorem that allows structures which
do not weakly eliminates imaginaries. Namely, we will work with ℵ0 categorical structures and
Tsankov’s classification, assuming that Aut(M) ↷M is primitive and has no algebraicity over sin-
gletons, not even in Meq (i.e. such that every a ∈ M, aclMeq(a) = dclMeq(a)). See Theorem 2.22
for the full statement. Examples to which this applies is M = P

∞(q), the separable infinite di-
mensional projective space on the finite field Fq, where q is a power of a prime number. M can
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also be an ℵ0-categorical Fraïssé limit, provided that one is careful enough with the relations and
functions at low arity.

The rest of the irreducible representations of AutM(T), namely the spherical ones, are indepen-
dent of M, provided that one assumes 2-transitivity in accordance with Nebbia’s CCR conjecture.
In this case, Ol’šanskiı̆’s classification of the spherical representations of Aut(T) [Ol’80, Sec. 5.3–
5.6] applies as is to the subgroup AutM(T) and just as Aut(T) is a Type I group, we obtain the
following:

Corollary 1. Let M be a 2-transitive first-order structure, either as in Theorem 1 or both ℵ0-categorical
and such that:

∀a ∈M, aclMeq(a) = dclMeq(a).

The group AutM(T) is of Type I.

Acknowledgments. I am grateful to Todor Tsankov for suggesting me to investigate on this sub-
ject and for supporting me in this project. I also want to thank Colin Jahel, Matthieu Joseph and
Basile Morando for having meaningful conversations on both Burger-Mozes universal groups
and Type I groups. This project was partly conducted while I was visiting Christian Rosendal at
the University of Maryland, to whom I am deeply indebted for his continued mathematical and
financial support.

1. Preliminaries

1.1. Colored trees.
Trees, i.e. acyclic connected graphs, will always be identified with the countable set of their

vertices. In other words "x ∈ X" where X is a tree will always mean that x is a vertex of X. Let X
be a tree and let x,y ∈ X. The set of vertices of X adjacent to x, called the neighbors of x, will be
denoted VX(x). We will write x ∼ y if x and y are adjacent vertices of a tree. If x has exactly one
neighbor in X, it will be called a leaf. We will denote by E(X) the set of unoriented edges of X, i.e.
the set of pairs {x,y} of adjacent vertices in X, and we will write EX(x) for the set of all edges of
X that involve x.

A path from x to y is a tuple (x0, ...,xn) of vertices of X such that x0 = x, xn = y and xi ∼ xi+1
for every i < n. In this setting, n ∈N is the length of this path. Trees naturally come with a metric
structure. Indeed, there exists a unique shortest path [x,y] from x to y and we can define d(x,y)
to be the length of [x,y]. Then (X,d) is a metric space and Aut(X) = Iso(X,d). We will write, for
every n ∈N:

BX(x,n) = {z ∈ X, d(x,z) ⩽ n} and SX(x,n) = {z ∈ X, d(x,z) = n}.

For a subset or tuple E ⊆ X, ⟨E⟩ will denote the subtree of X generated by E, meaning:

⟨E⟩ =
⋃
{[z,z′], z, z′ ∈ E}.

If x and y are distinct, we will adopt the following notation for the cone arising from x to y:

Conex(y)B {z ∈ X, y ∈ [x,z]}.

T will denote the regular tree with countable infinite valency. Given a countably infinite first-
order structure M, an M-coloring of T is a labeling of its unoriented edges by elements of M,
i.e. a map E(T) −→M, such that for every x ∈ T, the restriction c : ET(x) −→M is a bijection. A
back and forth argument shows that there exists a unique M-coloring of T up to conjugation by
an element of Aut(T). From now on, we thus fix such a structure M, an M-coloring c and still
denote by T the resulting colored tree. Any additional hypothesis on M will be specified in each
result separately. The colored tree T is represented in Figure 1 (left) where x,y,z ∈ T, a,b ∈ M
and c(x,y) = a, c(x,z) = b.

Given g ∈ Aut(T) and x ∈ T, the coloring c allows us to talk about the local action gx of g at x.
Indeed, let gx be the unique bijection of M such that the following diagram commutes:
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ET(x) ET(g(x))

M M

g

c c

gx

Fixing x ∈ T, the map g 7−→ gx is a cocycle:

∀g,h ∈ Aut(T), (gh)x = gh(x) ◦ hx .

Definition 1.1. Let AutM(T) be the following closed subgroup of Aut(T):

{g ∈ Aut(T),∀x ∈ T, gx ∈ Aut(M)}.

Remark 1.2. This group clearly depends on the choice of the coloring c. However, if c′ is another
M-coloring of T, the groups obtained using c and c′ are conjugate in Aut(T) (by any element
of Aut(T) changing c into c’, which always exists). For this reason, and since c is fixed, we will
suppress it from the notations. In fact, from now on, Γ will denote Aut(M) and G will denote
AutM(T).

This construction is the infinite-dimensional analogue of the one carried out in [BM00, Sec. 3].
Groups arising from this construction are known as Burger-Mozes universal groups, at least in the
finite-dimensional case, since the seminal paper [BM00]. The terminology is motivated by the
following (adapted from the original result [BM00, Prop. 3.2.2.] in the finite dimensional case):

Proposition 1.3. Suppose M is transitive and let H ⩽ Aut(T ) be a vertex-transitive subgroup such that
for every x ∈ T, the action H ↷ ET(x) is isomorphic to Γ ↷M. Then H is contained in a conjugate of
G by an element of Aut(T).

Interestingly, this construction predates [BM00] by at least two decades. Indeed, it appears
in [Ol’80] where Ol’šanskiı̆ classifies the irreducible continuous unitary representations of these
groups in the finite dimensional case under some transitivity hypothesis, as well as those of
Aut(T). The purpose of the present note is to get a similar classification for infinite dimensional
universal Burger-Mozes groups.

We start the study of these groups with a general method for building elements of G. All one
needs to provide is the image of an arbitrary vertex and a suitable collection of local actions:

Lemma 1.4. Let x,y ∈ T and let (γz)z∈T ∈ Γ T. The following assertions are equivalent:
(i) there exists a unique g ∈ G such that g(x) = y and gz = γz for all z ∈ T,

(ii) for every z ∼ z′ in T, γz(c(z,z′)) = γz′ (c(z,z′)).

Moreover, for every subtree X ⊆ T and every (γz)z∈X ∈ Γ X such that (ii) holds on X, there exists
g ∈ G such that g(x) = y and gz = γz for all z ∈ X.

Proof. □

Here are the different notions of transitivity we will be working with.

Definition 1.5. M is said to be

1. transitive if the action Γ ↷M has only one orbit.
2. 2-transitive if for every a , b, a′ , b′ ∈M, there exists γ ∈ Γ such that γ(a) = a′ and γ(b) = b′ .
3. primitive if the action Γ ↷M is transitive and for every (equivalently, some) a ∈M, Γa is a

maximal subgroup of Γ .

Similarly, given H ⩽ Aut(T), the action of H on T is said to be:

1. vertex-transitive if it has only one orbit.
2. edge-transitive if for every x,y,x′ , y′ ∈ T with x ∼ y and x′ ∼ y′ , there exists h ∈ H such that

h(x) = x′ and h(y) = y′ .
3. 2-transitive if for every x,y,x′ , y′ ∈ T with d(x,y) = d(x′ , y′), there exists h ∈ H such that

h(x) = x′ and h(y) = y′ .



6 RÉMI BARRITAULT

We will be going back and forth between the global action G↷ T and the local action Γ ↷M.
Given x ∈ T, a set A ⊆ ET(x) of edges around x identifies (using the coloring c) with a subset of
M. Next is how we will make identifications in the other direction:

Definition 1.6. Given a ∈M and x ∈ T, we will denote by ax the unique vertex of T adjacent to
x such that the corresponding edge bears the label a, i.e. such that c(x,ax) = a. Similarly, if A is a
subset of Meq, it identifies at x with the following subtree of T:

Ax B {x} ∪ {y ∈ VT(x), c(x,y) ∈ A} .

Lemma 1.7.
1. G↷ T is vertex-transitive.
2. G↷ T is edge-transitive ⇐⇒ Γ ↷M is transitive.
3. G↷ T is 2-transitive ⇐⇒ Γ ↷M is 2-transitive.

Proof.
1. Let x,y ∈ T. By Lemma 1.4, the following conditions define an element h of G sending x

to y :
– h(x) = y,
– ∀z ∈ T, hz = idM.

2. See the case n = 1 in the proof of 3.
3. Suppose G↷ T is 2-transitive and let a , b,a′ , b′ ∈M. Fix any x ∈ T. Then:

d(ax,bx) = 2 = d(a′x,b
′
x) ,

hence there exists g ∈ G such that g(ax) = a′x and g(bx) = b′x. Necessarily, g(x) = x and gx is
an element of Γ that sends a to a′ and b to b′ .

Conversely, assume Γ ↷ M is 2-transitive. Let x,y,x′ , y′ ∈ T be vertices satisfying
d(x,y) = d(x′ , y′). We reason by induction on n = d(x,y).

– n = 1:
Let a = c(x,y) and a′ = c(x′ , y′). Since Γ ↷ M is transitive, there exists γ ∈ Γ such
that γ(a) = a′ . We can send x to x′ using an automorphism g of T with constant local
action γ , i.e. such that gz = γ for all z ∈ T. Then g belongs to G by Lemma 1.4 and
also satisfies g(y) = y′ .

– n ⩾ 1:
Assume that the property is true for distances up to n and that d(x,y) = n + 1. Let
z (resp. z′) be the unique element of [x,y] (resp. [x′ , y′]) satisfying d(z,y) = 1 (resp.
d(z′ , y′) = 1). Then d(x,z) = n = d(x′ , z′) and, by the induction hypothesis, there is
g ∈ G such that g(x) = x′ and g(z) = z′ .
Suppose g(y) , y′ , otherwise there is nothing left to prove. Let w be the unique
element of [x′ , z′] such that d(w,z′) = 1. Let a = c(z′ , g(y)), a′ = c(z′ , y′) and b = c(w,z),
represented on Figure 2.

w z′b
y′a′

g(y)a
· · ·

x′

Distance n

Figure 2. Situation after simplifications.

Then a,a′ and b are pairwise distinct elements of M hence there exists γ ∈ Γ such that
γ(a) = a′ and γ(b) = b. By Lemma 1.4, the following conditions define an element h
of G

– h(z′) = z′ ,
– ∀v ∈ Conez′ (w), hv = id
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– ∀v ∈ T\Conez′ (w), hv = γ.
By construction, h fixes [x′ , z′] = g([x,z]) pointwise and sends g(y) to y′ . Thus, the
element hg of G satisfies:

hg(x) = h(x′) = x′ and hg(y) = y′

and the proof is finished.
□

As in the finite-dimensional case (see [BM00, Sec. 3.2]), it is possible to give a precise structural
description of vertex stabilizers in G. Indeed, assume M is transitive and fix arbitrary reference
points a ∈M and x ∈ T. For every n ⩾ 1, let Gn ⩽ Sym(ST(x,n)) be the permutation group induced
by the action of Gx on ST(x,n). Then:

1. (Gn)n⩾1 is naturally an inverse sequence and G is the inverse limit of (Gn)n⩾1,

2. G1 ≃ Γ and for every n ⩾ 1, Gn+1 ≃ Gn ⋉ Γ
S(x,n)
a (as permutation groups).

Recall that a subset E of a topological group H is Roelcke-precompact if for every open neigh-
borhood U of 1 in H , there exists a finite subset F ⊆ H such that E ⊆ UFU . A group is Roelcke-
precompact if it is Roelcke-precompact as a subset of itself and it is locally Roelcke-precompact if it
admits a Roelcke-precompact non-empty open subset. Since direct-products, semi-direct prod-
ucts and inverse limits of Roelcke-precompact groups are Roelcke-precompact [Tsa12, Prop. 2.2],
the previous structural claims imply the following:

Proposition 1.8. Assume M is transitive and such that Aut(M) is Roelcke-precompact. Then G B
AutM(T) is locally Roelcke-precompact. More precisely, the stabilizers of vertices and edges in G are
Roelcke-precompact.

By the classical Ryll-Nardzewski theorem, this applies in particular when M is ℵ0-categorical.

Corollary 1.9. Assume M is 2-transitive and such that Aut(M) is Roelcke-precompact and let x ∈ T.
Given K ⊂ G (resp. G+), the following properties are equivalent:

(i) K is coarsely bounded in G (resp. G+),
(ii) K is Roelcke-precompact in G (resp. G+),

(iii) K · x is bounded in T.

Proof. Since G and G+ are locally Roelcke-precompact by Proposition 1.8, we refer to [Zie21,
Th. 14] for the equivalence between (i) and (ii). We now prove that (ii) and (iii) are equivalent.
The proofs for G and G+ are the same since GA = G+

A as soon as A ⊆ T is non-empty, hence we
only prove it for G.

Assume K is Roelcke-precompact in G. Then, Gx being open, there exists finite subset F of K
such that K ⊆ GxFGx. Let M Bmaxf ∈F d(f x,x). If k ∈ K , there exists u,v ∈ Gx and f ∈ F such that
k = uf v. Then d(kx,x) = d(f vx,u−1x) = d(f x,x) ⩽M.

Regarding the converse, observe the following: For every g ∈ G, the double coset GxgGx is
determined by d(g(x),x). Indeed, suppose g,h ∈ G satisfy d(g(x),x) = d(h(x),x). Then, since G↷ T
is 2-transitive by Item 3 of Lemma 1.7, there exists u ∈ G such that ug(x) = h(x) and u(x) = x. This
exactly means h ∈ GxgGx, i.e. GxgGx = GxhGx.

Now since K · x is bounded, the set {d(kx,x), k ∈ K} is finite. Fix F ⊆ K finite covering all the
possibilities. By what precedes, K ⊆ GxFGx. Now G is locally Roelcke-precompact by Propo-
sition 1.8 hence products of Roelcke-precompact subsets of G are Roelcke-precompact [Zie21,
Prop. 12]. Since Gx is Roelcke-precompact in G by Proposition 1.8 and since finite sets are al-
ways Roelcke-precompact, so is K . □

1.2. Hilbert spaces and unitary representations. We recall here some basic results about Hilbert
spaces and unitary representations of permutation groups. First, the celebrated Alaoglu-Birkhoff
theorem will help us locate invariant vectors.

Theorem 1.10. Let H be a Hilbert and let K be any subgroup of U (H). Let p be the orthogonal
projection on HK , the closed subspace of K-invariant vector. Then, for every η ∈ H, pη belongs to
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the norm-closed convex hull Conv(K · η) of K · η. More precisely, pη is the only K-invariant vector in
Conv(K · η).

Next is a convergence theorem for projections associated with a directed collection of sub-
spaces of a Hilbert space, which will allow us to carry out approximation arguments.

Lemma 1.11. Let H be a Hilbert space, (I,⩽) a directed set and (Ki)i∈I a directed union of closed
subspaces of H. For every i ∈ I , denote by pi the orthogonal projection onto Ki . Let KB

⋃
i∈IKi and

let p be the orthogonal projection onto K. Then (pi) converges to p in the strong operator topology, i.e.:

∀ξ ∈ H, ||piξ − pξ || −→
i

0 .

We now recall classical definitions about permutation groups and their representations. Let
Ω be a countable set and let Sym(Ω) be the group of all bijections of Ω. In this paper, Ω will be
either T, Teq, M or Meq. We equip Sym(Ω) with the permutation group topology, i.e. the Polish
group topology given by pointwise convergence on Ω discrete. Let K be a closed permutation
group over Ω, i.e. a closed subgroup of Sym(Ω), and let A ⊆Ω. We will write KA for the pointwise
stabilizer of A in K and K̃A for the setwise stabilizer of A in K .

A continuous unitary representation of K is a continuous linear isometric action of K on a Hilbert
space. It is non-zero if H , 0. Throughout this paper, "representation" will always mean "contin-
uous unitary representation". Let π : K ↷ H and σ : K ↷ K be two representations of K . An
isomorphism between π and σ is a K-equivariant surjective isometry H −→K. We will say that σ
is (isomorphic to) a subrepresentation of π, and write σ ⊆ π, if there exist a K-equivariant isomet-
ric embedding K −→ H. The subrepresentation σ is proper if K identifies as a proper subspace
of K via the embedding. The representation π is irreducible if H , 0 and π admits no non-zero
proper subrepresentation. The unitary dual of K is the set of isomorphism classes of irreducible
representations of K .

If A is finite, we will writeHA for the closed subspace ofH consisting of KA-invariant vectors.
If A is infinite, we set:

HA =
⋃

B⊆A finite

HB .

If A = {a} is a singleton, we will write Ha instead. Finally, pA (or pa) will denote the orthogonal
projection on HA. When several representations are at play, we will specify them in the notation
and write pπA instead.

Lemma 1.12. Let K be a closed permutation group over a set Ω and let π : K ↷ H. Then H = HΩ,
i.e.: ⋃

A⊆Ω finite

HA is dense in H .

The following lemma is a well known fact about induced representations (for the definition
and basic properties of induction, we refer to [Fol95, Chap. 6]). Since we will only be inducing
from open subgroups U ⩽ G, we will always use the counting measure on the discrete countable
space G/U .

Lemma 1.13. Let K be a topological group and let U ⩽ K be an open subgroup. Let σ : U ↷ K be a
unitary representation of U on a Hilbert space K. Consider the representation πB IndK

U (σ ) of K and
denote by H the underlying Hilbert space. Let

H0 = {f ∈ H, Suppf ⊆U }.
Then H0 is stable under the action of U and π

∣∣∣
U

: U ↷H0 is isomorphic to σ .

Definition 1.14. Let H be a Hilbert space and H1,H2,H3 be closed subspaces of H such that
H3 ⊆H1 ∩H2. We will write H1 ⊖H3 for the orthogonal complement of H3 in H1 and:

H1 ⊥H3
H2 if H1 ⊖H3 ⊥H2 ⊖H3.

Denoting by p1,p2,p3 the orthogonal projections onH1,H2 andH3 respectively, this is equivalent
to p1p2 = p3
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2. Irreducible representations of AutM(T )

The study of the irreducible continuous unitary representations of G splits into two very dis-
tinct parts. In the classical terminology, an irreducible representations π : G ↷ H is said to be
spherical if there exists x ∈ T such that Hx , 0. Ol’šanskiı̆’s classification of spherical irreducible
representation of Aut(T), which corresponds to M being the trivial structure, actually extends
with the same proof to every 2-transitive subgroup of Aut(T). In particular, it applies to G pro-
vided that M is 2-transitive (see Lemma 1.7). Moreover, in this, case, this part of the unitary dual
of G is actually independent of M:

Theorem 2.1 ([Ol’80]). Let H ⩽ Aut(T) be a 2-transitive subgroup (e.g. H = G assuming M is 2-
transitive). Let π be a spherical irreducible representation of Aut(T). Then π

∣∣∣
H

is a spherical irreducible
representation of H . Moreover, every spherical irreducible representation of H arises uniquely in this
manner.

In other words, the correspondence π 7−→ π
∣∣∣
H

that sends a representation of Aut(T) to its restriction
to H induces a bijective correspondence between the spherical irreducible representations of Aut(T ) and
H .

Proof. This follows easily from [Ol’80, Sec. 5.3–5.6], the proof of which applies word for word to
H ⩽ Aut(T) under the 2-transitivity hypothesis. □

On the other hand, the non-spherical irreducible representations of G heavily depend on M. In
particular, if σ : Γ ↷H is a unitary representation of Γ , then it can be pulled to a representation
of Gx via the restriction morphism Gx −→ Γ given by g 7−→ gx. The restriction morphism being
surjective, this representation of Gx retains all the richness of σ and can in turn be induced to G.
For that reason, the representation theory of G is at least as complicated as that of Γ hence we
must restrict our attention to instances of the construction where the representation theory of Γ
is understood. A good candidate for such a class are the Roelcke-precompact closed permutation
groups. Indeed, the unitary representations of these groups have been fully classified in [Tsa12].
Since we will need transitivity hypothesis, we will actually work with Γ being presented as the
automorphism group of an ℵ0-categorical structure. Recall that, by the Ryll-Nardzewski Theo-
rem, for M countable and transitive, Γ is Roelcke-precompact if and only if M is ℵ0-categorical.

The notion of algebraicity, appearing at different levels, will be key. Here is the permutation
group theoretic definition of algebraicity. Fortunately, when M is ℵ0-categorical, it coincides
with the model theoretical definition, both for Γ ↷M and Γ ↷Meq.

Definition 2.2. Let H be a closed permutation group over a set Ω and let A be a subset of Ω.
1. An element x ∈Ω is said to be algebraic (resp. definable) over A (with respect to the action

of H on Ω) if there exists a finite subset B ⊆ A such that the orbit HB · x if finite (resp x
is fixed by HB). The algebraic closure (resp. definable closure) of A, denoted aclΩ(A) (resp.
dclΩ(A)), is the set of elements of Ω that are algebraic (resp. definable) over A. The set A
is algebraically closed if it is equal to its algebraic closure.

2. the set A is said to be definable (with respect to the action of H on Ω) if H̃D is open in H .
3. A is said to be locally H-finite if its intersection with every orbit of the action of H on Ω is

finite.

In the special case of the action Γ ↷ Meq, we will write DM for the set of definable, locally
finite and algebraically subsets of Meq. When M is ℵ0-categorical, understanding DM is key for
understanding the representation theory of Γ . Indeed, the algebraically closed subset of Meq

one needs to input in Lemma 2.4 in order to recover a classification theorem such as in [Tsa12]
are exactly the elements of DM. They form a lattice of sets (DM,⊆,∧,∨) where A ∧ B = A ∩ B
and A∨ B = aclMeq(A∪ B) for every A,B ∈Meq. The following nice properties of this lattice are
extracted from Section 2.1 of the preprint [Tsa24].

Proposition 2.3. Assuming M is ℵ0-categorical, the following properties hold:
1. The elements of DM are exactly the subsets of Meq of the form aclMeq(e) for some e ∈ Meq

(equivalently, of the form aclMeq(A) for some finite A ⊆Meq).
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2. For every D ∈ DM, the trace D ∩M is finite.
3. (DM,⊆,∧,∨) is a well-founded ordered lattice, i.e. every non-empty subset of DM admits a

minimal element.

From the classification of [Tsa12], the authors of [JT22] extracted the following lemma (Prop.
3.4 therein), which states that ℵ0-categorical structures are dissociated in a slightly more gen-
eral sense than that of [BJJ24]. This fundamental property, tightly tying the permutation group
structure of Γ to its representation theory, is enough to recover the full classification theorem in
a straightforward way (see the proof of Corollary 2.21 below).

Lemma 2.4. Assume M is ℵ0-categorical. Let π : Γ ↷ H be a unitary representation of Γ . For all
algebraically closed subsets A,B of Meq,

HA ⊥HA∩B HB ,

i.e. pApB = pA∩B.

As one can see from the above lemma, understanding the representation theory of Γ when M

is ℵ0-categorical involves the imaginaries of M, i.e. equivalence classes of definable equivalence
relations on M. See [Hod93, Sec. 4.3] for the definition of imaginaries and the structure Meq

associated to M.
To take them into account in the present construction, we need to introduce a slightly larger

colored tree than T. In this way, let Teq be the tree obtained from T by adding a countably
infinite collection of leaves around each of its vertices. Note that T ⊆ Teq. We also extend c to an
Meq−coloring of Teq in such a way (essentially unique) that:

∀x ∈ T, [c : ETeq(x) −→Meq is a bijection] .

The resulting colored tree will still be denoted Teq and is represented in Figure 1 (right). We
extend definition 1.6 to that context.

Convention. In graphical representations such as in Figure 1, solid vertices and thick edges, in
black, will always correspond to elements of T or labels in M. On the other hand, hollowed
vertices and thin edges, in blue, will always correspond to elements of Teq\T or labels in Meq\M.

We will adopt similar conventions in writing: x,y,z will denote vertices of T or Teq and a,b,c
will denote elements of M or Meq. Finally, X,Y ,Z will denote subtrees of T or Teq while A,B,C
will denote subsets of M or Meq.

Remark 2.5. It is a classical fact that the action Aut(M) ↷ M naturally extends to an action on
Meq, yielding a canonical identification Aut(M) ≃ Aut(Meq) (see [Hod93, Th. 4.3.3]). For that
reason, the action AutM(T) ↷ T naturally extends to an action on Teq.

Next is an explicit link between the actions G↷ Teq and Γ ↷Meq.

Lemma 2.6. Let X be a subtree of Teq and x ∈ X. Let Z = X ∪VTeq(x) and let A = EX(x) be seen as a
subset of Meq. The restriction map

GX −→ ΓA , g 7−→ gx

is continuous, open and surjective. In particular, GX /GZ ≃ ΓA (as topological groups).

Proof. We first show surjectivity. Let γ ∈ ΓVX (x). We will define an extension g ∈ G of γ . Reasoning
by induction, we assume g is defined on BT(x,n) for some n ⩾ 1 and extend it to BT(x,n+ 1). To
that aim, we fix y ∈ ST(x,n) and extend g to VT(y). It suffices to choose a local action at y, i.e.
specify gy . If y ∈ X, then it is fixed by g and we set gy = id . Otherwise, let z be the unique
neighbor of y with d(z,x) = n−1. We necessarily have z ∈ T. We propagate the local action of g at
z, i.e. we set gy = gz.

Openness and continuity are clear and imply the last isomorphism. □

Corollary 2.7. Let X be a subtree of Teq and x ∈ X. Write A = EX(x), seen as a subset of Meq. For
every y ∈ VTeq(x), the map

GX · y −→ ΓA · c(x,y) , g(y) 7−→ gx(c(x,y))
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is a bijection.

The following lemma clarifies what we will mean when we ask of a representation to be trivial
on a stabilizer.

Lemma 2.8. Let X be a subtree of Teq. For every continuous unitary representation σ : G̃X −→ U (H),
the following properties are equivalent:

(i) GX ⊆ kerσ,
(ii) H =HX .

Proof. Assume GX ⊆ kerσ . Then σ factors as a continuous unitary representation of G̃X /GX .
Moreover, the natural map G̃X /GX −→ Sym(X) is injective, continuous and has closed image.
Since the groups are Polish, it is a homeomorphic embedding that identifies G̃X /GX with a closed
permutation group over X. Then H =HX follows from Lemma 1.12. The converse is trivial. □

We now define the class of sets that will play for G↷ Teq the role that DM plays for Γ ↷Meq.

Definition 2.9. A subtree X of Teq is admissible if it is definable, locally G-finite and algebraically
closed in G ↷ Teq. An admissible subtree X is trivial if G̃X = G or G̃X = Gx for some x ∈ T. The
set of admissible subtrees of Teq will be denoted Adm(Teq).

Just as elements of DM can be used to classify the irreducible representations of Aut(M) if
M is ℵ0-categorical, we will use the admissible subtrees to get a similar classification for G. We
begin the study of Adm(Teq) with a very elementary observation:

Proposition 2.10. For every admissible subtree X of Teq,
1. if X is non-empty, X ∩T , ∅,
2. the leaves of X all lie in Teq\T.

Proof.
1. If X ∩T = ∅, X is a singleton {x}. Moreover, x ∈ Teq\T hence is adjacent to a unique vertex

y ∈ T. Then GX fixes y < X, contradicting the fact that X is algebraically closed.
2. Suppose X is non-empty and let x ∈ X ∩T. Since X is algebraically closed in Teq, we have

dclMeq(∅)x ⊆ VX(x) and x is not a leaf in X. Indeed, because of the formal definition of
Meq, |dclMeq | ⩾ 2.

□

The next step in relating elements of DM to admissible subtrees of Teq is the following:

Proposition 2.11. Let X be a subtree of Teq such that X ∩T , ∅. The following equivalences hold:

1. X is locally G-finite ⇐⇒ X ∩T is finite and EX(x) is locally Γ -finite in Meq for
every x ∈ X ∩T.

2. X is algebraically closed ⇐⇒ EX(x) is algebraically closed in Meq for every x ∈ X ∩T.

Moreover, if X ∩T is finite:

3. X is definable ⇐⇒ EX(x) is definable in Meq for every x ∈ X ∩T.

Proof.
1. Assume X is locally G-finite. Then X ∩ T is indeed finite since T is a single orbit under

the action of G (Item 1 of Lemma 1.7). Let x ∈ X ∩ T and let A be the subset of Meq

corresponding to EX(x). Let us show that A is Γ -finite.
Fix a ∈Meq. Then Γ · a ≃ Gx · ax by Corollary 2.7, hence:

Γ · a∩A ≃ Gx · ax ∩VX(x) ⊆ G · ax ∩X.

Since X is locally G-finite, G · ax ∩X is finite and so is Γ · a∩A.
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Conversely, assume that X ∩ T is finite and that EX(z) is locally Γ -finite for every z ∈
X∩T. Let x ∈ Teq. Since G ·T = T and X∩T is assumed to be finite, it suffices to deal with
the case x ∈ Teq\T. Then x is a leaf, adjacent to a unique vertex y ∈ T. Setting a = c(x,y),
we have:

G · x∩X =
⋃

z∈X∩T

G · x∩VX(z) =
⋃

z∈X∩T

(Γ · a)z ∩VX(z),

which is finite, as a finite union of finite sets.
2. Assume X is algebraically closed with respect to the action G ↷ Teq. Fix x ∈ X and let A

be the subset of Meq corresponding to EX(x). Let us show that A is algebraically closed.
Let A′ ⊆ A be finite. For every a ∈ aclMeq(A′), Corollary 2.7 yields:

ΓA′ · a ≃ GA′x · ax .
In particular, aclMeq(A′)x ⊆ aclTeq(A′x) ⊆ aclTeq(X) = X. Thus aclMeq(A′)x ⊆ VX(x)∪ {x} i.e.
aclMeq(A′) ⊆ A.

Conversely, assume that EX(x) is algebraically closed in Meq for every x ∈ X ∩T. Let X ′

be a finite subset of X. Up to replacing X ′ with a larger finite subset of X, we assume it is
a subtree of Teq and that X ′ ∩T , ∅. Let x ∈ aclTeq(X ′). Let y be the unique vertex of X ′

witnessing d(x,y) = d(x,X ′). We reason by induction on n = d(x,y).
– n = 0:

Then y ∈ X and there is nothing to prove.
– n > 0:

Let z be the unique vertex of Teq adjacent to y that satisfies d(z,x) = n − 1. Let A be
the subset of Meq corresponding to EX(y) and A′ the one corresponding to EX′ (y). By
Corollary 2.7,

GX′ · z ≃ ΓA′ · c(y,z)
Hence c(y,z) ∈ aclMeq(A′) ⊆ A and z ⊆ X. We can thus add z to X ′ and apply the
induction hypothesis to get x ∈ X.

3. Assume that X is definable (the finiteness hypothesis is not needed for this direction). Let
x ∈ X∩T and let A be the subset of Meq corresponding to EX(x). By Lemma 2.6, the image
of G̃X ∩Gx under the restriction map g 7−→ gx is open. Since, clearly, it is included in Γ̃A,
A is definable in Meq.

Conversely, let X be a subtree of Teq such that X ∩T is finite and EX(x) is definable in
Meq for every x ∈ X ∩T. Since X is a tree, we can assume X ∩T is non-empty. Note that:

G̃X ⩾
⋂

x∈X∩T

G̃VX (x)∪{x} .

The intersection being finite, it suffices to show that for every definable subset A ⊆Meq,
G̃Ax

is open in G. Now if A is a definable subset of Meq, then G̃Ax
is the inverse image of

Γ̃A under the restriction map Gx −→ Γ . This map being continuous by Lemma 2.6, G̃Ax
is

open.
□

As a consequence, we get a local characterization of admissible subtrees.

Corollary 2.12. Let X be a subtree of Teq. The following conditions are equivalent:
(i) X is admissible,

(ii) X ∩T is finite and for every x ∈ X ∩T, the subset EX(x) of Meq is definable, locally Γ -finite and
algebraically closed.

Moreover, if X is admissible and non-trivial, then G̃X is Roelcke-precompact.

Proof. The equivalences follow directly from Proposition 2.11.
As for the last statement, it is a classical fact that a group which stabilizes a non-empty finite

diameter tree fixes either a vertex or an edge. Since X ∩ T is finite, X has finite diameter and
the claim follows from Proposition 1.8 and from the fact that an open subgroup of a Roelcke-
precompact group is also a Roelcke-precompact group. □
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Similarly to what happens with elements of DM in Meq, admissible subtrees of Teq are always
infinite but are algebraic closures of finite subtrees if M is ℵ0-categorical.

Lemma 2.13. Assume M is ℵ0-categorical. Let X be a non-trivial admissible subtree of Teq. There
exists a finite subtree X0 ⊆ X such that aclTeq(X0) = X. Moreover, every such X0 satisfies GX0

⩽ G̃X
with finite index.

Proof. Using Item 1 in Proposition 2.3, for every x ∈ X ∩ T, there exists e(x) ∈ Meq such that
EX(x) ≃ aclMeq(e(x)). Define:

X0 = (X ∩T)∪ {e(x)x, x ∈ X ∩T},

which is a finite subtree of X. Fix x ∈ X\X0. We will show that x ∈ aclTeq(X0).
Necessarily, x is an element of Teq\T hence a leaf in X. Let y be its unique neighbor, which is

an element of X ∩T. Then, using Corollary 2.7:

GX0
· x ≃ Γe(y) · c(x,y) ,

which is finite by choice of e(y). Hence X ⊆ aclTeq(X0) and the other inclusion is trivial.
For the finite index assertion, recall that the commensurator of GX0

in G̃X is given by:

CommG̃X
(GX0

) = {g ∈ G̃X ,
(
GX0

gGX0

)/
GX0

and GX0

∖(
GX0

gGX0

)
are finite.}

Lemma 2.7 in [Tsa12] states that open subgroups of a Roelcke-precompact group have finite
index in their commensurator. Since G̃X is Roelcke-precompact by Corollary 2.12, proving the
the following is enough to conclude:

G̃X = CommG̃X
(GX0

).

Let g ∈ GX0
. Since X0 is finite,(

GX0
gGX0

)/
GX0

is finite. ⇐⇒ ∀x ∈ X0, GX0
g · x is finite.

⇐⇒ ∀x ∈ X0, g · x ∈ aclTeq(X0)

⇐⇒ g ·X0 ⊆ aclTeq(X0) = X

⇐⇒ g ·X ⊆ X

Similarly, GX0

∖(
GX0

gGX0

)
is finite if and only if g−1 ·X ⊆ X and the claim is proved. □

Using the admissible subtrees, we can exhibit a family of irreducible representations of G
without any additional hypothesis on M. To that aim, we first provide a classical argument in
the study of invariant spaces associated with induced representations of permutation groups.

Lemma 2.14. Let X,Y be admissible subtrees of Teq and let σ : G̃X ↷K be a unitary representation of
G̃X that is trivial on GX . Denote πB IndG

G̃X
(σ ) and let H be the underlying Hilbert space of π. Then:

HY = {f ∈ H, ∀g ∈ G, [f (g) , 0⇒ gX ⊆ Y ]}.

In particular,
HX = {f ∈ H, Supp(f ) ⊆ G̃X}

and pX is the multiplication by the indicator map of G̃X .

Proof. Write H̃Y B {f ∈ H, ∀g ∈ G, [f (g) , 0⇒ gX ⊂ Y ]}. Since this is a closed subspace of H, it
suffices to show that HY ′ ⊆ H̃Y for every finite subtree Y ′ ⊆ Y to get HY ⊆ H̃Y . Hence, let Y ′ ⊆ Y
be finite.

Let f ∈ HY ′ and assume g ∈ G is such that f (g) , 0. Then ||f (·)|| is constant on GY ′gG̃X .
Since f ∈ ℓ2(G/G̃X ), it implies that

(
GY ′gG̃X

)/
G̃X is finite. Let X0 ⊆ X be as in Lemma 2.13. In

particular, GX0
⩽ G̃X with finite index, hence

(
GY ′gGX0

)/
GX0

is also finite. Equivalently, since
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X0 is finite, every element of g(X0) has a finite orbit under the action of GY ′ . In other words,
g(X0) ⊆ aclTeq(Y ′) ⊆ aclTeq(Y ). Then:

(1) g(X) = g(aclTeq(X0)) = aclTeq(g(X0)) ⊆ aclTeq(Y ) = Y .

Conversely, let f ∈ H̃Y .

Claim. We can assume that Suppf is a finite union of G̃X cosets and that there exists a finite G̃X-
invariant subset X ′ ⊆ X such that:

(2) ∀g ∈ G, f (g) ∈ HX′ .

Proof of the claim. Let ε > 0. Since HY is closed, we can assume that Supp(f ) is a finite union of
G̃X-cosets and pick h1, . . . ,hm ∈ G such that Suppf =

⊔
1⩽j⩽m hjG̃X . By Lemma 2.8, K = KX and,

for every j ⩽ m, there exists Xj ⊆ X finite and ξj ∈ KXj
such that ||ξj − f (hj )|| ⩽ ε√

m
. Since X is

locally G-finite, every element of X has a finite orbit under the action of G̃X . In particular,

X ′ B G̃X ·
⋃

1⩽i⩽m

Xi

is finite and stable under the action of G̃X .
Define fε as follows:

∀g ∈ G, fε(g) =
{

σ (u−1)ξj if g = hju for some j ⩽m and some u ∈ G̃X ,
0 otherwise.

Then fε ∈ H̃Y and ||f − fε || ⩽ ε. Since HY is closed, it suffices to show that fϵ(g) ∈ HX′ for every
g ∈ Suppfε to finish the proof of the claim. Let g ∈ Suppfε. There exists j ⩽ m and u ∈ G̃X such
that g = hju. Then:

fε(g) = σ (u−1)ξj ∈ Ku−1(X′) =KX′ .

□claim

Next, let X0 ⊆ X be as in Lemma 2.13. Since GX0
has finite index in G̃X , Suppf is a finite

union of GX0
-cosets and we can write:

Supp(f ) =
⋃

1⩽i⩽n

giGX0

where g1, ..., gn ∈ G.
Let Y0 ⊆ Y be as in Lemma 2.13 and define:

Y ′ = Y0 ∪
⋃

1⩽i⩽n

gi(X
′)

which is a finite subset of Y . Indeed, recall that g1, . . . , gn belong to Supp(f ) hence satisfy gi(X) ⊆
Y for every i ⩽ n. Moreover, since X ′ is G̃X-stable:

(3) ∀i ⩽ n,∀g ∈ giGX0
, g(X ′) = gi(X

′) ⊆ Y ′ .

Let us show that f is GY ′ -invariant. Fix u ∈ GY ′ and g ∈ G.
– If g < g1GX0

∪ · · · ∪ gnGX0
:

Then u−1g < u−1g1GX0
∪· · ·∪u−1gnGX0

. But for every i ⩽ n, gi(X0) ⊆ Y ′ hence u−1giGX0
=

giGX0
and g,u−1g < Suppf . In other words:

(u · f )(g) = f (u−1g) = 0 = f (g).

– If g ∈ giGX0
for some i ⩽ n:

Then u−1g ∈ GY ′g. But GY ′g = gGg−1(Y ′) ⊆ gGX′ by (3) and there is v ∈ GX′ such that
u−1g = gv. Thus:

(u · f )(g) = f (u−1g) = f (gv) = σ (v−1)(f (g)) = f (g)

where the last equality follows from (2).
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For the special case Y = X, note that since X is locally G-finite, we have for every g ∈ G:

gX ⊆ X ⇐⇒ gX = X .

□

The previous lemma can be used to give a list a of irreducible representations of G while also
identifying the repetitions in that list.

Recall that if H,H ′ are conjugate subgroups of G, say gHg−1 = H ′ for some g ∈ G, and if τ is a
representation of H ′ on a Hilbert spaceH, then τg : H ↷H is given by τg (h) = τ(ghg−1) for every
h ∈H .

Proposition 2.15. Assume M is ℵ0-categorical. Let X be an admissible subtree of Teq and σ be an
irreducible representation of G̃X which is trivial on GX . Then πB IndG

G̃X
(σ ) is irreducible.

Moreover, if Y is another admissible subtree of Teq and τ is an irreducible representation of G̃Y

which is trivial on GY and such that π′ B IndG
G̃Y

(τ) is isomorphic to π, there exists g ∈ G such that

g(X) = Y and σ ≃ τg .

Proof. We first prove the irreducibility of π by showing that every non-zero vector in H is G-
cyclic. Indeed, let f ∈ H\{0}. Up to translation, we can assume that f (1) , 0, or equivalently by
Lemma 2.14 that pX(f ) , 0. By Lemma 1.11 and the Alaoglu-Birkhoff Theorem 1.10, pX(f ) lies
in the G-cyclic hull of f hence the following claim finishes the proof of the irreducibility of π:

Claim. Every non-zero vector of HX is G-cyclic in H.

Proof of the claim. Using Lemmas 2.14 and 1.13, the representation

π
∣∣∣
G̃X

: G̃X ↷HX

is isomorphic to σ hence irreducible. Thus, every non-zero vector of HX is G̃X-cyclic in HX , a
space which itself is G-cyclic in H. □claim

Next, assume π and π′ are isomorphic and denote by H and H′ their respective underlying
Hilbert space. ThenH′X ≃HX , 0. Let f ∈ H′X\{0} and g ∈ G such that f (g) , 0. By Lemma 2.14, g
satisfies g(Y ) ⊆ X. By symmetry, we can find h ∈ G such that h(X) ⊆ Y . Since X and Y are locally
G-finite, this implies h(X) = Y . In particular, hG̃Xh

−1 = G̃Y . Finally, using Lemmas 2.14 and 1.13
again for the first and last isomorphisms:

σ ≃
(
G̃X

π
↷HX

)
≃

(
G̃X

π′
↷H′X

)
≃

(
G̃X

π′h
↷H′Y

)
=

(
G̃Y

π′
↷H′Y

)h
≃ τh .

□

The previous results does give us a list of irreducible representations of G but it might actually
be empty: we have no result regarding the existence of admissible trees yet. We thus investigate
the converse of Lemma 2.13. If there is A ⊂M such that aclM(A) is infinite, or if there is a,b ∈M
distinct such that aclM(a) = aclM(b), then the converse fails for lack of local G-finiteness. How-
ever, these are the only obstruction. In particular, if M is ℵ0-categorical and has no algebraicity
over singletons, we obtain a way to produce admissible subtrees.

Proposition 2.16. Assume M is ℵ0-categorical and has no algebraicity over singletons, i.e. such that
aclM(a) = {a} for every a ∈M. Let X ⊆ Teq be a finite subset. Then aclTeq(X) is an admissible subtree.

More generally, if X is an admissible subtree of Teq and Y ⊆ Teq is either a finite subset or an
admissible subtree, aclTeq(X ∪Y ) is an admissible subtree.

Proof. Let X be a finite subset of Teq. Since aclTeq(X) = aclTeq(⟨X⟩) and ⟨X⟩ is finite, we may
assume that X is a tree. By transitivity of G ↷ T, aclTeq(∅) = ∅ and we may assume that X is
non-empty. Moreover, if X ∩ T = ∅, then X is a singleton {x} where x ∈ Teq\T and there exists
a unique y ∈ T such that x ∼ y. Then G{x} = G{x,y} hence aclTeq(X) = aclTeq(X ∪ {y}) and we can
assume that X ∩T , ∅.
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Claim. After these simplifications, we have:

aclTeq(X)∩T =
⋃

x∈X∩T

(aclMeq(EX(x))∩M)x ,

In particular, aclTeq(X)∩T is finite.

Proof of the claim. Since M has no algebraicity on singletons, GX assigns an infinite orbit to every
vertex y ∈ T that such that d(y,X) ⩾ 2 (we are using the assumption that X is a tree). Thus, if
y ∈ aclTeq(X)∩T\X, then d(y,X) = 1. Since X ∩T , ∅, we even have d(y,X ∩T) = 1. Moreover, for
every z ∈ T such that z ∼ x, we have by Corollary 2.7, seeing EX(x) as a finite subset of Meq:

GX · z ≃ ΓEX (x) · c(x,y)

Thus:
aclTeq(X)∩T =

⋃
x∈X∩T

(aclTeq(X)∩M)x =
⋃

x∈X∩T

(aclMeq(EX(x))∩M)x

as claimed.
Finally, for every x ∈ X ∩ T, aclMeq(EX(x)) ∩M is finite by Items 1 and 2 of Proposition 2.3

hence so is aclTeq(X)∩T. □claim

By the above claim, we can assume that aclTeq(X)∩T ⊆ X. Let x ∈ aclTeq(X)∩T = X ∩T. For
every y ∼ x in Teq, we have by Corollary 2.7:

GX · y ≃ ΓEX (x) · c(x,y) ,

hence EaclTeq (X)(x) = aclMeq(EX(x)) is locally finite, algebraically closed and definable in Meq by
Items 1 and 2 of Proposition 2.3. We conclude with Proposition 2.12.

Suppose now X is an admissible subtree and Y is a finite subset of Teq. By Lemma 2.13, there
exists a finite subset X0 ⊆ Teq such that X = aclTeq(X0). Then aclTeq(X ∪ Y ) = aclTeq(X0 ∪ Y ) and
the first part of the proof applies. Similarly, if Y is an admissible subtree, apply Lemma 2.13
again to get Y0 finite such that Y = aclTeq(Y0). Then aclTeq(X ∪ Y ) = aclTeq(X0 ∪ Y0) and the first
part of the proof applies. □

The previous result also allows us to endow Adm(Teq) with a lattice structure. Indeed, assume
M is ℵ0-categorical and has no algebraicity over singletons. Then, given two admissible subtrees
X,Y ⊆ Teq, X ∧ Y B X ∩ Y is admissible by Corollary 2.12 and X ∨ Y B aclTeq(X ∪ Y ) is also
admissible by Proposition 2.16. Moreover, since DM is well-founded and X ∩ T is finite if X
is admissible, the local characterization of admissible trees from Corollary 2.12 shows that the
lattice (Adm(Teq),⊆,∧,∨) is also well founded:

Corollary 2.17. If M is ℵ0-categorical and has no algebraicity over singletons, (Adm(Teq),⊆,∧,∨) is
a well-founded lattice.

To finish the classification, we will need some slightly stronger hypotheses on M, namely
primitivity as well as the following:

∀a ∈M, aclMeq(a) = dclMeq(a).

The latter hypothesis can be rephrased as follows: for every a ∈M, Γa admits no proper subgroup
of finite index. These are indeed stronger than what we assumed above:

Lemma 2.18. Assume M is primitive and such that:

∀a ∈M, aclMeq(a) = dclMeq(a).

Then:
aclMeq(∅) = dclMeq(∅).

If moreover M is ℵ0-categorical, then M has no algebraicity over singletons:

∀a ∈M, aclM(a) = {a}.
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Proof. Write Γ for Aut(M). Let e ∈ aclMeq(∅). Fixing any a ∈M, we have e ∈ aclMeq(∅) ⊆ aclMeq(a) =
dclMeq(a). Hence Γa ⩽ Γe and, by primitivity, Γe = Γa or Γe = Γ . If Γe = Γa, then a ∈ dcl(∅), contradict-
ing the transitivity hypothesis. Thus Γe = Γ and e ∈ dclMeq(∅). The other inclusion is trivial.

For the last statement, assume M is ℵ0-categorical and consider the equivalence relation ∼ on
M given by a ∼ b if aclM(a) = aclM(b). This relation is Γ -invariant hence trivial by primitivity of
M. There are two cases:

– for every a,b ∈M, aclM a = aclM b:
Then, for every a,b ∈M, a ∈ aclM a = aclM b and thus aclM b = M. This is a contradiction

to the well known fact that, in an ℵ0-categorical structure, the algebraic closure of a finite
set is finite.

– for every a , b ∈M, aclM a , aclM b:
Let a,b ∈ M and suppose that b ∈ acl(a). Then Γa · b is finite, i.e. Γa/(Γa ∩ Γb) is finite.

Since Γa has no proper finite index subgroup, Γa ⊆ Γb. But Γb is a proper subgroup of Γ by
transitivity of M. Thus, by primitivity of M again, Γa = Γb and b = a.

□

Example 2.19. Evidently, the trivial structure with equality as sole relation, which corresponds
to Aut(T), the original context of [Ol’80], satisfies the above hypothesis. More generally, any ℵ0-
categorical structure that admits weak elimination of imaginaries and has no algebraicity over
singletons will do (primitivity is automatic in this case, see [JJ25, Cor. 3.7]). This applies in
particular to the Random graph or the projectivization of the countable vector space over a finite
field. More examples to come.

We now turn to the key lemma for finding induced subrepresentations, adapted from [Ol’80,
Lem. 5.1]. It can be interpreted as a weak form of dissociation (compare with Lemma 2.4) for the
representations of G.

Lemma 2.20. Assume M is ℵ0-categorical, primitive and satisfies:

∀a ∈M, aclMeq(a) = dclMeq(a).

Let X,Y ⊆ Teq be admissible subtrees, with X non-trivial and X ⊈ Y .
There exists a proper admissible subtree X ′ ⊆ X such that for every representation π : G ↷H of G,

we have pY pX = pY pX′ .

Proof. First, note that one can always replace Y with a larger admissible subtree. Indeed, suppose
Y ′ is an admissible subtree of Teq such that Y ⊆ Y ′ . Suppose also there is X ′ ⊆ X such that for
every representation π : G ↷H of G, we have pY ′pX = pY ′pX′ . Since Y ⊆ Y ′ we have pY pY ′ = pY
and:

pY pX = pY pY ′pX = pY pY ′pX′ = pY pX′ .

Let x ∈ X\Y be at maximal distance from Y (admissible trees have finite diameter). Then x
must be a leaf in X hence adjacent to a unique vertex y ∈ X ∩T. We distinguish two cases:

– Case 1: y ∈ Y .
Set:

X ′ = X\ [VX(y)\Y ] .

In other words, remove from X all vertices that are adjacent to y but don’t belong to Y . All
of the vertices so removed are leaves in X by maximality of d(x,Y ), hence X ′ is a tree. It is
strictly contained in X since x < X ′ . Moreover, every x′ ∈ X ′\{y} satisfies EX′ (x′) = EX(x′).
By Corollary 2.12, in order to check that X ′ is admissible, it suffices to check that EX′ (y)
is locally Γ -finite, definable and algebraically closed in Meq. But EX′ (y) = EX(y)∩EY (y) is
indeed locally Γ -finite, definable and algebraically closed as the intersection of two such
sets.

Claim. Up to replacing Y with a larger admissible tree, we can assume that X ′ ⊆ Y .
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Proof of the claim. Let Y ′ = aclTeq(Y∪X ′). By Proposition 2.16, this is an admissible subtree
of Teq that contains both Y and X ′ . Moreover, VY ′ (y) = VY (y) thus x < Y ′ and X ⊈ Y ′ .

□claim

We are thus left with the following simplified situation, illustrated in Figure 3: X\Y is
only comprised of neighbors of y. Note that the elements of X\Y are all leaves in X hence
lie in Teq\T by Proposition 2.10.

y

x

...
X ′

Y

X\Y

Figure 3. Situation after simplifications.

Using Lemma 2.13, let X0,Y0,X
′
0 be finite subtree of Teq such that

aclTeq(X0) = X, aclTeq(Y0) = Y and aclTeq(X ′0) = X ′ .

Up to replacing X0,Y0,X
′
0 with larger finite trees, we can assume that X0∩Y0 = X ′0 and that

y ∈ X ′0. Let A = EX0
(y), B = EY0

(y) and C = EX′0
(y), seen as finite subsets of Meq. Again, we

can assume that aclMeq(A) = EX(y), aclMeq(B) = EY (y) and aclMeq(C) = EX′ (y).
Define:

Z = X ′0 ∪ (Meq)y = X0 ∪ (Meq)y .

Then GX′0
leaves Z, and thus HZ , stable. Since the action GX′0

↷ HZ is trivial on GZ ,
and GX′0

/GZ identifies to ΓC by Lemma 2.6, restricting and factorizing π gives rise to a
representation

σ : ΓC ↷KBHZ .

Similarly, GX0
/GZ ≃ ΓA and GY0

/(GY0
∩GZ ) ≃ ΓB, both subgroups of ΓC . Applying Lemma

2.4 to the representation σ : ΓC ↷ K and recalling that aclMeq(A)∩ aclMeq(B) = aclMeq(C)
yields:

pσaclMeq (B)p
σ
aclMeq (A) = pσaclMeq (C)

Claim. Projections associated with σ identify with restrictions of projections associated with π
as follows:

pσaclMeq (A) = pπX
∣∣∣HZ

, pσaclMeq (B) = pπY
∣∣∣HZ

& pσaclMeq (C) = pπX′
∣∣∣HZ

.

Proof of the claim. We prove it for Y only, the other identifications are similar and more
straightforward since X,X ′ ⊆ Z. First, note that:

pπYHZ =HY ∩HZ .

Indeed, let ξ ∈ HZ and ε > 0. By Lemma 1.11, there exists Y1 ⊆ Y finite such that:

||pπY1
ξ − pπY ξ || ⩽ ε.

Up to replacing Y1 with a larger finite subset of Y , we can assume X ′0 ⊆ Y1. Then GY1
leaves Z, and hence HZ , stable. In particular, using the Alaoglu-Birkhoff Theorem 1.10,
we get:

pπY1
ξ ∈ HZ .

Since ε was arbitrarily small and HZ is closed, pπY ξ ∈ HZ . The other inclusion is trivial.
Now pπY

∣∣∣HZ
and pσaclMeq (B) are both orthogonal projectors defined on HZ . To prove they

are equal, it suffices to show they have the same image, i.e. that HY ∩HZ =KaclMeq (B).
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Let ξ ∈ HY ∩HZ and ε > 0. As above, there exists Y1 a finite subset of Y containing X ′0
such that ||pπY1

ξ − ξ || ⩽ ε and pπY1
HZ ⊆ HZ . Let B1 = VY1

(y) seen as a finite subset of Meq.
Let γ ∈ ΓB1

. Using surjectivity in Lemma 2.6, pick g ∈ GY1
such that gy = γ . Then:

σ (γ)pπY1
(ξ) = π(g)pπY1

ξ = pπY1
ξ,

hence pπY1
(ξ) ∈ KB1

⊆ KaclMeq (B). Since ε was arbitrarily small and KaclMeq (B) is closed,
ξ ∈ KaclMeq (B).

Conversely, let B1 ⊆ aclMeq(B) be finite. Let Y1 = X ′0 ∪ (B1)y . Clearly, KB1
⊆ HZ ∩HY1

⊆
HZ ∩HY . Since B1 was arbitrary and HZ ∩HY is closed, KaclMeq (B) ⊆HZ ∩HY .

□claim

By the previous claim, and because X,X ′ ⊆ Z:

pπY p
π
X = pπY p

π
Xp

π
Z = pσaclMeq (B)p

σ
aclMeq (A)p

π
Z = pσaclMeq (C)p

σ
Z = pπX′p

π
Z = pπX′

which finishes the proof of the first case.

– Case 2: y < Y .
Let z be the unique neighbor of y in Teq such that d(z,Y ) = d(y,Y )− 1.

Claim. We can assume that z ∈ X.

Proof of the claim. Indeed, suppose that z < X. By maximality of d(x,Y ), X must be con-
tained in (Meq)y . More precisely, there is a definable, locally Γ -finite and algebraically
closed subset A ⊆ Meq such that X = Ay . By Item 2 of Proposition 2.10, we also have
A∩M = ∅. Writing a = c(y,z), we distinguish two cases:

– If A ⊆ aclMeq(a): then, A = dclMeq(∅). Indeed, since aclMeq(a) = dclMeq(a) by hypoth-
esis, for every e ∈ A we have Γa ⩽ Γe. By primitivity of M and since A∩M = ∅, we have
Γe = Γ , i.e. e ∈ dclMeq(∅). The other inclusion is trivial. Now, GX = Gy , a contradiction
to X being non-trivial.

– If A ⊈ aclMeq(a): Replace Y with aclTeq(Y ∪ {y}) and apply Case 1.
□claim

Claim. We can assume that:

∀y′ ∈ (VX(z)\Y )∩T, EX(y′) = aclMeq(c(z,y′)).

Proof of the claim. Indeed, suppose there exists y′ ∈ (VX(z)\Y )∩T such that:

EX(y′) ⊈ aclMeq(c(z,y′)) .

Replacing y with y′ and x with any x′ ∈ VX(y′)\aclMeq(c(z,y′)), we can assume that y = y′ .
Finally, replacing Y with aclTeq(Y ∪ {y′}), we can apply Case 1.

□claim

We now assume the statements in both of the two previous claim and define X ′ by
cutting away all the branches that emerge from z outside of Y , i.e.:

X ′ = aclTeq X\
⋃

y′∈VX (z)\Y
Conez(y

′)).

Note that all vertices so removed are at distance at most 2 from z and that y < X ′ .
Similarly to the previous case, we can replace Y with aclTeq(Y∪X ′) to get that X ′ = X∩Y .

Finally, set:

Z = X ∪ (Meq)z ∪
⋃

y′∈VT(z)

aclMeq(c(z,y′))y′ .

The situation is slightly different than in Case 1. Instead of seeing the structure M

around y, we see a seemingly slightly larger structure around z. It can be thought of as
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the diameter 4 labeled subtree Teq
0 ⊆ Teq:

(Meq)z ∪
⋃

y′∈VT(z)

aclMeq(c(z,y′))y′ ,

represented in Figure 4.

z y
a

x

...

b

. . .

. . .

...

. . .

. . .

...
...

(aclMeq a)\{a}

(aclMeq b)\{b}

Figure 4. The larger structure.

This subtree of Teq is stable under the action of Gz and since aclMeq(a) = dclMeq(a) for
every a ∈M, the permutation actions Gz ↷ Teq

0 and Γ ↷M are essentially the same. The
dissociation argument at the end of the proof of Case 1, invoking Lemma 2.4, applies
verbatim modulo the identification of the actions Gz ↷ Teq

0 and Γ ↷M.
□

The previous lemma can be used to find induced representations in any representation of G
with no spherical part:

Corollary 2.21. Assume M is ℵ0-categorical, primitive and satisfies:

∀a ∈M, aclMeq(a) = dclMeq(a).

Let π : G ↷ H be a non-zero unitary representation of G which has no spherical part, i.e. such
that Hx = 0 for every x ∈ T. There exists a non-trivial admissible subtree X ⊆ Teq and an irreducible
representation σ : G̃X /GX ↷K such that IndG

G̃X
(σ ) ⊆ π.

Proof. By Lemma 1.12, there exists a finite subtree Y ⊆ T such that HY , 0. Then Z B aclTeq(Y )
is an admissible subtree of Teq by Proposition 2.16 and Lemma 2.18 such that HZ ⊇ HY , 0. In
particular:

{X ∈ Adm(Teq), HX , 0} , ∅
and we can fix a minimal element X in this set. Since π has no spherical part, X must be non-
trivial.

Claim. For every g,h ∈ G such that gG̃X , hG̃X , we have:

(4) π(g)HX ⊥ π(h)HX .
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Proof of the claim. Up to replacing g with h−1g, we can assume that h = 1. Let ξ,η ∈ HX . It
follows:

(5)
〈
π(g)ξ,η

〉
=

〈
π(g)pXξ,pXη

〉
=

〈
pg(X)π(g)ξ,pXη

〉
=

〈
π(g)ξ,pg(X)pXη

〉
.

Recalling that X is locally G-finite and g < G̃X , we get X ⊈ g(X). Applying Lemma 2.20 and by
minimality of X, we get pg(X)pX = 0. Equation (5) now gives

〈
π(g)ξ,η

〉
= 0 and the claim follows.

□claim

Now, consider the action of G̃X on HX , which gives factorizes to a representation σ of the
group G̃X /GX . Form π′ B IndG

G̃X
(σ ) with underlying space H′ . Let (gi)i∈I be a system of coset

representatives of G/G̃X . Define a map Φ : H′ −→H in the following way:

∀f ∈ H′ , Φ(f ) =
∑
i∈I

π(gi)f (gi) .

By definition of the norm on H′ and by Equation (4), Φ is well defined and isometric. Note
that it does not depend on the choice of (gi), for if h−1g ∈ G̃X , then π(g)f (g) = π(g)f (hh−1g) =
π(g)(σ (g−1h)f (h)) = π(h)f (h). Similarly, it is easily seen that Φ is a morphism of representations.

To conclude, recall that G̃X is Roelcke-precompact by Corollary 2.12 hence σ splits as a sum of
irreducible subrepresentations by the main result of [Tsa12]. Moreover, by the basic properties
of induction, if τ ⊆ σ , then IndG

G̃X
(τ) ⊆ IndG

G̃X
(σ ). □

We are now ready to state and finish the proof of our main theorem.

Theorem 2.22. Assume M is ℵ0-categorical, primitive and satisfies:

∀a ∈M, aclMeq(a) = dclMeq(a).

1. Let X be a non-trivial admissible subtree of T and let σ be an irreducible representation of G̃X .
Then IndG

G̃X
(σ ) is an irreducible representation of G.

2. If Y is another admissible subtree of Teq and τ is an irreducible representation of AutM(Y ) such
that IndG

G̃Y
(τ) is isomorphic to IndG

G̃X
(σ ), then there exists g ∈ G such that g(X) = Y and τg is

isomorphic to σ .
3. Every non-spherical irreducible representation of G is of the above form.

Proof. The only thing left to prove is Item 3. To that aim, let π be a non-spherical irreducible
unitary representation of G. In particular, π is non-zero and, by Corollary 2.21, there exists a
non-trivial admissible subtree X of Teq and an irreducible representation σ of G̃X /GX such that
IndG

G̃X
(σ ) ⊆ π. This must be an equality by irreducibility of π.

□

It is worth pointing out that Corollary 2.21 combined with Zorn’s Lemma also has the follow-
ing consequence:

Corollary 2.23. Assume M is a primitive ℵ0-categorical structure such that:

∀a ∈M, aclMeq(a) = dclMeq(a).

Let π be a unitary representation of AutM(T) with no spherical part (meaningHx = 0 for every/some
x ∈ T ). Then π is dissociated and splits as a sum of non-spherical irreducible subrepresentations of the
above form.

Finally, our classification is close enough to Ol’šanskiı̆’s so that his proof of Aut(T) being Type
I [Ol’80, Th. 5.7] applies almost word for word, hence Corollary 1 is also proved (recall that if M
is 2-transitive, then M is primitive).
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Corollary 2.24. Assume M is ℵ0-categorical, 2-transitive and satisfies:

∀a ∈M, aclMeq(a) = dclMeq(a).

Then G is of Type I.

Example 2.25. This applies in particular to 2-transitive ℵ0-categorical structures that weakly
eliminates imaginaries, such as the projectivization PGL(∞,q) of the countable vector space over
a finite field Fq. More examples to come.

3. The Howe-Moore property

3.1. A model theoretical structure on T. Let L = (Ri ,ni)i∈I be the language of M, assumed to be
relational. In this notation, I is an index set andRi is a relation symbol of arity ni for every i ∈ I .
Define LT B (Ri ,ni + 1)i∈I ∪{(∼,2)}. Then T, once M-colored with χ, is naturally an LT-structure
which satisfies AutLT (T) = G. Indeed, interpret ∼ in T as the edge relation and, for every i ∈ I ,
interpret Ri in T as follows:

RT
i B {x∧ a, a ∈ VT(x)ni , χ(x,a) ∈ Ri} .

This structure is still denoted T.
In order to capture the index 2 subgroup G+, we also define L+

T B LT ∪ {(ε,2)} where ε is
interpreted in T as:

∀x,y ∈ T, [ε(x,y) ⇐⇒ dT(x,y) is even]

and denote this structure by T+.

Definition 3.1. Given a subtree X ⊆ T and x ∈ X, write A(X,x)B {c(x,y), y ∈ VX(x)} ⊆M.

Proposition 3.2. AutLT (T) = AutM(T) and AutL+
T
(T) = Aut+

M
(T)

Proof. Suppose g ∈ AutLT (M). Clearly, g is a tree automorphism. Moreover, let x ∈ T , a ⊆ V (x)
and R ∈ L. Then:

□

Definition 3.3. Let G be a topological group. A subset A of G is said to be coarsely bounded if for
every continuous and G-invariant écart d on G, the d-diameter of A is finite.

Definition 3.4. Let H be a topological group. A continuous map f : H −→ C vanishes at infinity
if for every ε > 0, there exists a coarsely bounded set A ⊆H such that |f (g)| ⩽ ε for every g ∈H\A.
We will denote by C0(H) the set of such functions.

Given a sequence (gn)n∈N in a topological group, we will write gn −→ ∞ if (gn) eventually
escapes every coarsely bounded subset of H . The geometry of our groups being nice enough, the
above notion is captured by such sequences:

Lemma 3.5. Assume M is ℵ0 categorical and 2-transitive. Let f ∈ C(G+). The following properties
are equivalent:

(i) f vanishes at infinity,
(ii) for every (gn) ∈ G+N, gn −→∞ implies f (gn) −→ 0 .

Proof. (i)⇒ (ii) is obviously true in higher generality. We prove the converse by contrapositive:
suppose f does not satisfy (i). Then, there exists ε > 0 such that N B {g ∈ G, |f (g)| ⩾ ε} is not
coarsely bounded. By Corollary 1.9, N · x is unbounded in T. Thus, for every n ∈N, there exists
gn ∈N such that d(gnx,x) ⩾ n. We have gn −→∞ but |f (gn)| ⩾ ε, contradicting (ii). □

Definition 3.6. A topological group G has the Howe-Moore property if for every representation
π : G ↷ H with no invariant vector, all the matrix coefficients of G arising from π vanish at
infinity.

Theorem 3.7. Assume M is ℵ0-categorical and 2-transitive. The group Aut+
M

(T) has the Howe-Moore
property.
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In the following lemmas, we assume M to beℵ0-categorical and 2-transitive. We also fix τ ∈ G+

a step 2 translation in G+ and denote by ω− and ω+ the ends of its axis ∆ =]ω−,ω+[, assuming
τnx −→ ω+ as n −→ +∞. The proof follows the classical one from the finite arity case. The
main difference is that since our groups are not locally compact, a finer Cartan decomposition
is required. Namely, we give a description of GA\G+/GB for every finite subtrees A,B ⊆ T, not
just A = B = {x}, seeing this double quotient as a space of types. From now on, such A and B
non-empty are fixed. Let n = |A|, m = |B| and write A = {a1, . . . , an}, a = (a1, . . . , an), B = {b1, . . .bm}
and b = (b1 . . . ,bm).

Definition 3.8. LetN be a structure and let x = y ∧ z where y = (y1, . . . , yn) and z = (z1, . . . , zm) are
tuple of variable. For p = p(x) ∈ Sx(N ), we define π1(p) = p

∣∣∣
y
∈ Sy(N ) and π2(p) = p

∣∣∣
z
∈ Sz(N )

Throughout, the distance at play is the graph distance, definable using using only ∼, and
d(x,y) =∞ is the type-definable condition [d(x,y) ⩾ n for every n] which means that x and y are
not contained in the same connected component.

Lemma 3.9. Consider the map

Φ : GA\G+/GB −→ Sx(T+) , G+
AgG

+
B 7−→ tpT+

(
a,g · b

)
.

1. Φ is a homeomorphism onto its image.
2. Im(Φ) =

{
p(x), π1(p) = tpT+ (a) , π2(p) = tpT+

(
b
)

and d(y,z) <∞
}
,

3. Im(Φ) =
{
p(x), π1(p) = tpT+ (a) , π2(p) = tpT+

(
b
)}

= Im(Φ)
⋃
{p∞} where p∞ is the unique

type in Sx(T+) such that π1(p) = tpT+ (a) , π2(p) = tpT+

(
b
)

and p∞ ⊢ [d(y,z) =∞].

Given g ∈ G+ such that g(B)∩A = ∅, let xgA and x
g
B be the unique vertices of A and B respectively

such that d(A,g(B)) = d
(
x
g
A, g

(
x
g
B

))
. Let also αg (resp. βg ) be the element of M coloring the unique

edge going from x
g
A toward g(B) (resp. from g

(
x
g
B

)
toward A). Write t

g
A B tpM

(
αg

∣∣∣∣A(
x
g
A

))
and

t
g
B B tpM

((
gxgB

)−1
· βg

∣∣∣∣B(
x
g
B

))
. Finally, define:

Ψ (g)B
(
x
g
A,x

g
B, t

g
A, t

g
B,d (A,g(B))

)
.

Lemma 3.10. Let g,h ∈ G+ be such that g(B)∩A = ∅ and h(B)∩A = ∅. The following are equivalent:
(i) GAgGB = GAhGB,

(ii) Ψ (g) = Ψ (h).

Proof. Clearly, Ψ is left GA-invariant and right GB-invariant hence (i)⇒ (ii). Conversely, suppose
Ψ (g) = Ψ (h). We will write xA B x

g
A = xhA and xB B x

g
B = xhB. Let C be the finite subtree of T

generated by A and g(B), i.e C = A∪g(B)∪{x1, . . . ,xd} where d = d(A,g(B))−1, x1 ∼ xA, xd ∼ g(xB)
and xi ∼ xi+1 for every i < d. Then, the shortest path from A to g(B) is xA = x0 ∼ x1 ∼ · · · ∼ xd ∼
xd+1 = g(xB). Similarly, let xA = y0 ∼ y1 ∼ · · · ∼ yd ∼ yd+1 = h(xB) be the shortest path from A to
h(B). To carry out the proof, we will build some u ∈ GA such that ug(b) = h(b) for every b ∈ B by
specifying local actions on C and applying Lemma 1.4. Recalling that ℵ0-categorical structures
are homogeneous, we proceed as follows:

A: Since tpM (αg |A (xA) ) = t
g
A = thA = tpM

(
αh |A (xA)

)
, there exists γxA ∈ ΓA(xA) such that γxA(αg ) =

αh. For every a ∈ A\{xA}, set γa = idM.

g(B): Similarly, since t
g
B = thB, there exists γg(xB) ∈ hxBΓB(xB)

(
gxB

)−1
such that γg(xB) · βg = βh. For

every b ∈ B\{xB}, set γg(b) = hb (gb)−1.
[x1,xd]: By 2-transitivity of M, we can find for every i ∈ {1, . . . ,d} some γxi ∈ Γ such that γxi ·

c(xi ,xi+1) = c(yi , yi+1) and γxi · c(xi ,xi−1) = c(yi , yi−1).
Then (γc)c∈C satisfies the conditions of Lemma 1.4 hence gives u ∈ G such that uc = γc for

every c ∈ C and u(xA) = xA. By construction, u ∈ GA and ug(b) = h(b) for every b ∈ B. We have
thus shown that h ∈ GAgGB i.e. GAgGB = GAhGB. The situation is represented in Figure 5.
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A

g(B) h(B)

βg βh

g(xB) h(xB)

xA

αg αh

γxA
x1

xd

y1

yd

γg(xB)

Figure 5. Local actions at xA and g(xB). Green edges are sent to green edges.
At the bottom, γxA fixes A(xA) and sends αg to αh. Up above, γg(xB) reverses the
action of gxB on B(xB) and replaces it with that of hxB while sending βg to βh. The
dotted circles represent VgB(g(b)) and VhB(h(b)) respectively.

□

Note that the first four components of Ψ take values in a finite set (recall that M is assumed
to be ℵ0-categorical).

Proof. □

Lemma 3.11. There exists F ⊆ G+ finite such that:

G+ = GAF {τn, n ⩾ 0}FGB.

Proof. Let K B {g ∈ G+, g(B)∩A , ∅}. Then K is Roelcke-precompact in G+ by Lemma 1.8. Thus
the existence of F0 ⊆ K ⊆ G+ such that K ⊆ GAF0GB. It remains to deal with G+\K .

With an eye towards Lemma 3.10, fix a ∈ A, b ∈ B,tA ∈ S1(A(a)), tB ∈ S1(B(b)) where we assume
tA and tB are realized by some α ∈M\A(a) and β ∈M\B(b) respectively. Let also δ = 0 if d(a,b)
is even or δ = 1 if d(a,b) is odd. We will produce g = g(b, tB) and h = h(a, tA) in G+ such that for
every n ∈N,

Ψ (hτng) = (a,b, tA, tB,2(n+ 1)− δ).

Note that for every g ∈ G+, we have d(a,g(b)) mod 2 = d(a,b) mod 2 hence this will be enough
to conclude, after setting

F B F0 ∪
⋃

a,b,tA,tB

{g(b, tB),h(a, tA} .

Let c be the unique neighbor of b such that χ(b,c) = β. Write ∆ = {xi , i ∈Z} in such a way that
τ(xi) = xi+2 for every i ∈ Z and d(x0,b) is even. By Item 3 of Lemma 1.7, G ↷ T is 2-transitive
and we can find g ∈ G such that g(b) = x0 and g(c) = x−1. Note that since d(g(b),b) = d(x0,b) is
even, g ∈ G+.

Next, let d be the unique neighbor of a such that χ(a,d) = α, let d′ be any neighbor of d distinct
from a and fix ∆′ a bi-infinite geodesic in T such that ∆′∩A = {a} and d,d′ ∈ ∆. Using 2-transitivity
of M and Lemma 1.4, one can find h ∈ G such that:

– h(∆) = ∆′ ,
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A

a
x−1

g(B)

τg(B)

τ2g(B)

α

∆

hg(B)

hτg(B)

hτ2g(B)

Bb
β

τ

∆′

d

d′

c

g

h

τ

τ

h

h

Figure 6. Realization of a given value of Ψ . Follow the dotted arrows to track
where B and c are sent. Green edges are sent to green edges.

– (h(x−1),h(x0)) =
{

(a,d) if d(x0,d) is even,
(d,d′) otherwise.

Again, by parity of d(h(x0),x0), we in fact have h ∈ G+. The situation is represented in Figure 6
(in the case d(x0,d) even). Because for every n ∈ N, no edge of hτng(B) ever belongs to ∆′ , we
indeed have:

∀n ∈N, Ψ (hτng) = (xA,xB, tA, tB,2(n+ 1)− δ) .

□

Just as in the finite arity case, we have reduced the problem to studying the vanishing matrix
coefficients of G on the abelian semigroup {τn, n ∈N}:

Corollary 3.12. Let π : G+
↷H be a representation of G+ and suppose there exists ξ,η ∈ H such that

f π
ξ,η does not vanish at infinity. Then, there exists ξ ′ ,η′ ∈ H such that:

f π
ξ ′ ,η′ (τ

n) −̸→
n→+∞

0 .

Proof. Suppose f π
ξ,η does not vanish at infinity. Approximating ξ and η by invariant vectors using

Lemma 1.12 yields a uniform approximation of f . We can thus assume ξ,η ∈ HA for some non-
empty finite subtree A ⊆ T. By Lemma 3.5, there exists ε > 0 and (gn) ∈ G+N such that gn −→∞
while

∣∣∣∣f π
ξ,η(gn)

∣∣∣∣ ⩾ ε for every n ∈ N. By Lemma 3.11, we have G+ = GAF{τn, n ∈ N}FGA for

some finite subset F ⊆ G+ and we can write gn = unfnτ
knf ′nu

′
n for some un,u

′
n ∈ GA, fn, f

′
n ∈ F and

kn ∈ N. Up to extraction, we can assume that (fn) and (f ′n) are constant sequences and denote
their respective value by f and f ′ .

We claim that kn −→ +∞. Indeed, GA and F are coarsely bounded by Corollary 1.9, hence
τkn −→∞. Again, since finite sets are coarsely bounded, we necessarily have kn −→ +∞.

Set ξ ′ B π(f ′)ξ and η′ B π(f −1)η. Then, for all n ∈N:

f π
ξ,η(gn) = f (unf τ

knf ′u′n) =
〈
π(τkn )π(f ′)π(u′n)ξ,π(f −1)π(u−1

n )η
〉

=
〈
π(τkn )ξ ′ ,η′

〉
= f π

ξ ′ ,η′ (τ
kn ).



26 RÉMI BARRITAULT

We thus have
∣∣∣∣f π
ξ ′ ,η′ (τ

kn )
∣∣∣∣ ⩾ ε for every n ∈N while kn −→ +∞. In particular, f π

ξ ′ ,η′ (τ
n) −̸→ 0. □

The classical proof of Lubotzky and Mozes now carries through verbatim. More precisely,
Propositions 1 and 2 in [LM92] hold for G+. Once combined, they yield the following, which
finishes the proof of Theorem 3.7:

Proposition 3.13. Let π : G+
↷ H be a representation of G+ with no G+-invariant vector. Then

f π
ξ,η(τn) −→ 0 for every ξ,η ∈ H.

Proof. See Propositions 1 and 2 in [LM92]. □

3.2. Model theory. Want to describe the theory of T and (countable) models of it. Given a tuple a
in T and a vertex c ∈ T, c ∼ a will mean c ∼ ai for every i ⩽ n. We also define localized quantifiers,
to be used in building LT

M
formulae.

Definition 3.14.

1. Let x0 be a variable. The localized existential quantifier is ∃y ∼ x0,B ∃y,y ∼ x∧. Similarly,
the localized universal quantifier is ∀y ∼ x,B ∀y,y ∼ x→.

2. Given ϕ(x) ∈ LM, we define the formula ϕT(x0,x) ∈ LT
M

by replacing every quantifier by its
localized version, always using the same variable x0, and inputting x0 as the extra variable
in every relation symbol.

Example 3.15. If ϕ = ∀x,R(x) where R is a relation in LM, then ϕT(x0) is the LT
M

formula ∀x ∼
x0,R(x0,x) = ∀x0, x ∼ x0 → R(x0,x). More generally, if ϕ = ∀x1∃x2 . . .∧

i
∨
j
Ri,j (xi,j ), then ϕT(x0) =

∀x1 ∼ x0∃x2 ∼ x0 . . .∧
i
∨
j
Ri,j (x0,xi,j ). Note that under our assumptions on M, every formula in LM

is equivalent up to Th(M) to one of the above form, i.e. a positive prenex formula.

Proposition 3.16. Let ϕ(x) ∈ L be a positive formula. For every a0 ∈ T and a ∈ Tx such that a0 ∼ a,
the following are equivalent:

(i) T ⊨ ϕT(a0, a),
(ii) M ⊨ ϕ(χ(a0, a)).

In particular, if ϕ is a positive sentence, M ⊨ ϕ if and only if T ⊨ ∀x,ϕT(x).

Proof. We prove it by induction on the complexity of ϕ. If ϕ is atomic, this is clear by definition
of the LM-structure T. Stability under boolean combinations of formulae is also trivial.

□

Definition 3.17. Let

T M
∞ B Th{∼}(T) ∪

⋃
ϕ∈ThLM (M)

{∀x ϕT(x) , ∀x∀y [x ∼ y⇒ [ϕT(x,y)↔ ϕT(y,x)]]} .

Definition 3.18. Let T M
∞ be the union of the following sets of formulae:

– T∞ the theory of T as a graph. It can be reduced to axioms expressing that T is connected,
acyclic and has infinitely many edges around every vertex.

– { ∀x ϕT(x) , ϕ ∈ ThLM(M)}, expressing that we see a model of M around each vertex,
– { ∀x∀y [x ∼ y⇒ [ϕT(x,y)↔ ϕT(y,x)]] , ϕ(x) ∈ LM}, ensuring that copies of M linked by an

edge agree on the LM-type of the edge.

Proposition 3.19. Assume M is ℵ0-categorical. Let M be a countable model of T M
∞ . As a graph,

M is an everywhere infinite forest, i.e. a disjoint union of the graph T. Moreover, there exists χM an
M-coloring ofM such that for every ϕ(x) ∈ LM and every a,b ∈M such that a ∼ b, denoting byN the
connected component of a,

M ⊨ ϕT(a,b) ⇐⇒ N ⊨ ϕT(a,b) ⇐⇒ M ⊨ φ(χ(a,b) .
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Proof. In particular, M is a model of T∞ i.e. a locally infinite graph such that every connected
component is isomorphic to T as a graph. Fixing a ∈ M, we can view Ma B VM (a) as an LM
structure. Indeed, every relation symbol R of arity n in LM can be interpreted as {b ∈ Ma, M ⊨
R(a,b)}. By construction, we have for every ϕ(x) ∈ LM and b ∈Ma:

(6) Ma ⊨ ϕ(b) ⇐⇒ M ⊨ ϕT(a,b).

Thus, in view of the second item of the definition of T M
∞ , we see that ThLM(Ma) = T hLM(M).

Since M is ℵ0-categorical,Ma is isomorphic to M and we can fix an isomorphism γa.
In turn, given b ∈M such that b ∼ a, Equation (6) and the second item in the definition of T M

∞
ensure that tpMa

(b) = tpMb
(a). Since ℵ0-categorical structures are homogeneous (REF XXX), we

can pick γb : Mb −→M an isomorphism of LM-structures such that γb(a) = γa(b).
Repeating this process inductively on the connected component of a and then separately on

every connected component ofM, we obtain a family (γa)a∈M such that:

1. For every a ∈M, γa is an isomorphism of LM-structuresMa −→M,
2. For every a,b ∈M such that a ∼ b, we have γa(b) = γb(a).

Now, define χM on the edges of M by setting:

χM(a,b)B γa(b) for every a,b ∈M such that a ∼ b .

Then χM is an M-coloring of every connected component ofM such that for every ϕ(x) ∈ LM and
every a,b ∈M such that a ∼ b, denoting byN the connected component of a,

M ⊨ ϕT(a,b) ⇐⇒ N ⊨ ϕT(a,b) ⇐⇒ M ⊨ φ(χ(a,b) .

□

Corollary 3.20. Assume M is ℵ0-categorical. The countable models of T M
∞ are exactly the countable

disjoint unions of copies of T. More precisely, a modelM of T M
∞ is a locally infinite graph such that

every connected component ofM is isomorphic to T as an LM-structure.

Definition 3.21.
1. A type in p ∈ Sx(T∞) encodes a tree if every realization of p is connected.
2. Given p ∈ Sx

(
T M
∞

)
, we will denote by p∼ the restriction of p to the language of graphs and

say that p encodes a tree if p∼ does.

Lemma 3.22. Let p ∈ Sx

(
T M
∞

)
and write x = (x1, . . . ,xn). If p encodes a tree, then p∼ and the set

{ϕT(xi ,x), ϕ(x) ∈ LM, i ⩽ n} ∩ p determine p.

Proof. □

Proposition 3.23. Assume M is ℵ0-categorical.

1. T M
∞ is complete.

2. T is the prime model of T M
∞ .

3. The countable models of T M
∞ are exactly the countable disjoint unions of copies of T. More

precisely, a modelM of T M
∞ is a locally infinite graph such that every connected component is

isomorphic to T (as an LM-structure). In this context, each union of components of M is an
elementary substructure ofM.

Note that, given n ∈N, there exists a formula ϕn(x) in the language of graphs that says "x has
diameter at most n". Abuse of notation: different arity = different formulae. We will say that
a type p ∈ Sx

(
T M
∞

)
has bounded diameter if ϕn ∈ p for some n ∈ N. For y,z ⊆ x, we will write

(d(y,z) =∞) ∈ p if (d(x,y) ⩾ n) ∈ p for every n (the latter can be expressed as a legitimate formula
in the language of graphs).

Lemma 3.24. Assume M is ℵ0-categorical and let p ∈ Sx

(
T M
∞

)
. Then p is isolated if and only if it has

bounded diameter.
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Proof. Suppose p is isolated. Then p is realized in the prime model T. Since T is connected and p
has finitely many variable, p has bounded diameter.

Conversely, suppose p has bounded diameter. There exists a countable model of T M
∞ that

realizes p, sayM and a ∈Mx. By Proposition 3.19,M is a countable unions of copies of T, each
copy being an elementary substructure by ??. Since p has finite diameter, a is entirely contained
in a single copy of T. Thus p is realized in the prime model of T M

∞ (Item 2 of Proposition ??)
hence must be isolated [TZ12, Th. 4.5.3]. □

Corollary 3.25. Let p ∈ Sx

(
T M
∞

)
. Up to reordering x, there exists a unique partition x = x(1)∧· · ·∧x(n)

such that pi B p
∣∣∣
x(i)

is isolated for every i ≤ k and (d(x(i),x(j)) =∞) ∈ p for every i , j.

Conversely, for every partition x(1)∧· · ·∧x(n) of x and for all isolated types p1 ∈ Sx(1)

(
T M
∞

)
, . . . ,pk ∈

Sx(k)

(
T M
∞

)
, there exists a unique p ∈ Sx

(
T M
∞

)
that decomposes accordingly.

Proof. To decompose p, realize it in a countable model of T M
∞ , say by M and a ∈ Mx. By Item

3 of Proposition 3.19, M is a countable unions of copies of T. Partition x = x(1) ∧ · · · ∧ x(n)
depending on which connected component each element of a falls into. In this decomposition, pi
has bounded diameter for every i ⩽ k, hence is isolated by Lemma 3.24, and (d(x(i),x(j)) =∞) ∈ p
for every i , j. This decomposition is clearly unique.

Conversely, suppose a decomposition x = x(1)∧· · ·∧x(n) and isolated types p1, . . . ,pk are given.
Recalling that isolated types are realized in every model, we can realize each pi in a distinct copy

Mi of T, say by a(i) ∈ Mx(i)
i . Then M BM1 ∪ · · · ∪Mk is a model T M

∞ and even an elementary
extension of each of theMi by Item 3 of Proposition 3.19. Thus pB tpM(a(1)∧ · · · ∧ a(k)) admits
the desired decomposition. □

Corollary 3.26.
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